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The Yamabe problem

A standard problem in Differential Geometry is to find special metrics on
a given manifold (Mn, g) (compact). One way is to consider conformal
deformations, scaling a metric g(x) by a positive function λ(x).

For n = 2 by the Uniformization theorem (Klein-Koebe-Poincaré) one
can always find conformal metrics with constant Gaussian curvature.

For n ≥ 3 Yamabe posed the problem of finding conformal metrics with
constant scalar curvature, as a step to solve Poincaré’s conjecture.

If Rg is the scalar curvature, setting g̃(x) = λ(x)g(x) = u(x)
4

n−2 g(x),
u(x) one has to find on M a positive solution of

(Y ) −cn∆u+Rg u = Ru
n+2
n−2 ; cn = 4

n− 1

n− 2
, R ∈ R.

Andrea Malchiodi (SNS, Pisa) Taipei, Jan. 20, 2018 2 / 26



The Yamabe problem

A standard problem in Differential Geometry is to find special metrics on
a given manifold (Mn, g) (compact).

One way is to consider conformal
deformations, scaling a metric g(x) by a positive function λ(x).

For n = 2 by the Uniformization theorem (Klein-Koebe-Poincaré) one
can always find conformal metrics with constant Gaussian curvature.

For n ≥ 3 Yamabe posed the problem of finding conformal metrics with
constant scalar curvature, as a step to solve Poincaré’s conjecture.

If Rg is the scalar curvature, setting g̃(x) = λ(x)g(x) = u(x)
4

n−2 g(x),
u(x) one has to find on M a positive solution of

(Y ) −cn∆u+Rg u = Ru
n+2
n−2 ; cn = 4

n− 1

n− 2
, R ∈ R.

Andrea Malchiodi (SNS, Pisa) Taipei, Jan. 20, 2018 2 / 26



The Yamabe problem

A standard problem in Differential Geometry is to find special metrics on
a given manifold (Mn, g) (compact). One way is to consider conformal
deformations, scaling a metric g(x) by a positive function λ(x).

For n = 2 by the Uniformization theorem (Klein-Koebe-Poincaré) one
can always find conformal metrics with constant Gaussian curvature.

For n ≥ 3 Yamabe posed the problem of finding conformal metrics with
constant scalar curvature, as a step to solve Poincaré’s conjecture.

If Rg is the scalar curvature, setting g̃(x) = λ(x)g(x) = u(x)
4

n−2 g(x),
u(x) one has to find on M a positive solution of

(Y ) −cn∆u+Rg u = Ru
n+2
n−2 ; cn = 4

n− 1

n− 2
, R ∈ R.

Andrea Malchiodi (SNS, Pisa) Taipei, Jan. 20, 2018 2 / 26



The Yamabe problem

A standard problem in Differential Geometry is to find special metrics on
a given manifold (Mn, g) (compact). One way is to consider conformal
deformations, scaling a metric g(x) by a positive function λ(x).

For n = 2 by the Uniformization theorem (Klein-Koebe-Poincaré) one
can always find conformal metrics with constant Gaussian curvature.

For n ≥ 3 Yamabe posed the problem of finding conformal metrics with
constant scalar curvature, as a step to solve Poincaré’s conjecture.

If Rg is the scalar curvature, setting g̃(x) = λ(x)g(x) = u(x)
4

n−2 g(x),
u(x) one has to find on M a positive solution of

(Y ) −cn∆u+Rg u = Ru
n+2
n−2 ; cn = 4

n− 1

n− 2
, R ∈ R.

Andrea Malchiodi (SNS, Pisa) Taipei, Jan. 20, 2018 2 / 26



The Yamabe problem

A standard problem in Differential Geometry is to find special metrics on
a given manifold (Mn, g) (compact). One way is to consider conformal
deformations, scaling a metric g(x) by a positive function λ(x).

For n = 2 by the Uniformization theorem (Klein-Koebe-Poincaré) one
can always find conformal metrics with constant Gaussian curvature.

For n ≥ 3 Yamabe posed the problem of finding conformal metrics with
constant scalar curvature, as a step to solve Poincaré’s conjecture.

If Rg is the scalar curvature, setting g̃(x) = λ(x)g(x) = u(x)
4

n−2 g(x),
u(x) one has to find on M a positive solution of

(Y ) −cn∆u+Rg u = Ru
n+2
n−2 ; cn = 4

n− 1

n− 2
, R ∈ R.

Andrea Malchiodi (SNS, Pisa) Taipei, Jan. 20, 2018 2 / 26



The Yamabe problem

A standard problem in Differential Geometry is to find special metrics on
a given manifold (Mn, g) (compact). One way is to consider conformal
deformations, scaling a metric g(x) by a positive function λ(x).

For n = 2 by the Uniformization theorem (Klein-Koebe-Poincaré) one
can always find conformal metrics with constant Gaussian curvature.

For n ≥ 3 Yamabe posed the problem of finding conformal metrics with
constant scalar curvature, as a step to solve Poincaré’s conjecture.

If Rg is the scalar curvature, setting g̃(x) = λ(x)g(x) = u(x)
4

n−2 g(x),
u(x) one has to find on M a positive solution of

(Y ) −cn∆u+Rg u = Ru
n+2
n−2 ; cn = 4

n− 1

n− 2
, R ∈ R.

Andrea Malchiodi (SNS, Pisa) Taipei, Jan. 20, 2018 2 / 26



The Sobolev-Yamabe quotient

Suppose from now on that M is compact, and recall the equation

(Y ) −cn∆u+Rg u = Ru
n+2
n−2 ; cn = 4

n− 1

n− 2
, R ∈ R.

Considering R as a Lagrange multiplier, one can try to find solutions by
minimizing the Sobolev-Yamabe quotient

QSY (u) =

∫
M

(
cn|∇u|2 +Rgu

2
)
dV(∫

M |u|2
∗dV

) 2
2∗

; 2∗ =
2n

n− 2
.

The Sobolev-Yamabe constant is defined as

Y (M, [g]) = inf
u6≡0

QSY (u).
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The Sobolev quotient in Rn (n ≥ 3)

Recall the Sobolev-Gagliardo-Nirenberg inequality in Rn

‖u‖2
L2∗ (Rn)

≤ Bn
∫
Rn

|∇u|2dx; u ∈ C∞c (Rn).

As for Y (M, [g]), define the Sobolev quotient Sn = infu

∫
Rn cn|∇u|

2dx

‖u‖2
L2∗ (Rn)

.

Completing C∞c (Rn), Sn is attained by ([Aubin, ’76], [Talenti, ’76])

Up,λ(x) :=
λ

n−2
2

(1 + λ2|x− p|2)
n−2
2

; p ∈ Rn, λ > 0.

• Since Sn is conformal to Rn, one has that Y (Sn, [gSn ]) = Sn.

Andrea Malchiodi (SNS, Pisa) Taipei, Jan. 20, 2018 4 / 26



The Sobolev quotient in Rn (n ≥ 3)

Recall the Sobolev-Gagliardo-Nirenberg inequality in Rn

‖u‖2
L2∗ (Rn)

≤ Bn
∫
Rn

|∇u|2dx; u ∈ C∞c (Rn).

As for Y (M, [g]), define the Sobolev quotient Sn = infu

∫
Rn cn|∇u|

2dx

‖u‖2
L2∗ (Rn)

.

Completing C∞c (Rn), Sn is attained by ([Aubin, ’76], [Talenti, ’76])

Up,λ(x) :=
λ

n−2
2

(1 + λ2|x− p|2)
n−2
2

; p ∈ Rn, λ > 0.

• Since Sn is conformal to Rn, one has that Y (Sn, [gSn ]) = Sn.

Andrea Malchiodi (SNS, Pisa) Taipei, Jan. 20, 2018 4 / 26



The Sobolev quotient in Rn (n ≥ 3)

Recall the Sobolev-Gagliardo-Nirenberg inequality in Rn

‖u‖2
L2∗ (Rn)

≤ Bn
∫
Rn

|∇u|2dx; u ∈ C∞c (Rn).

As for Y (M, [g]), define the Sobolev quotient Sn = infu

∫
Rn cn|∇u|

2dx

‖u‖2
L2∗ (Rn)

.

Completing C∞c (Rn), Sn is attained by ([Aubin, ’76], [Talenti, ’76])

Up,λ(x) :=
λ

n−2
2

(1 + λ2|x− p|2)
n−2
2

; p ∈ Rn, λ > 0.

• Since Sn is conformal to Rn, one has that Y (Sn, [gSn ]) = Sn.

Andrea Malchiodi (SNS, Pisa) Taipei, Jan. 20, 2018 4 / 26



The Sobolev quotient in Rn (n ≥ 3)

Recall the Sobolev-Gagliardo-Nirenberg inequality in Rn

‖u‖2
L2∗ (Rn)

≤ Bn
∫
Rn

|∇u|2dx; u ∈ C∞c (Rn).

As for Y (M, [g]), define the Sobolev quotient Sn = infu

∫
Rn cn|∇u|

2dx

‖u‖2
L2∗ (Rn)

.

Completing C∞c (Rn), Sn is attained by ([Aubin, ’76], [Talenti, ’76])

Up,λ(x) :=
λ

n−2
2

(1 + λ2|x− p|2)
n−2
2

; p ∈ Rn, λ > 0.

• Since Sn is conformal to Rn, one has that Y (Sn, [gSn ]) = Sn.

Andrea Malchiodi (SNS, Pisa) Taipei, Jan. 20, 2018 4 / 26



The Sobolev quotient in Rn (n ≥ 3)

Recall the Sobolev-Gagliardo-Nirenberg inequality in Rn

‖u‖2
L2∗ (Rn)

≤ Bn
∫
Rn

|∇u|2dx; u ∈ C∞c (Rn).

As for Y (M, [g]), define the Sobolev quotient Sn = infu

∫
Rn cn|∇u|

2dx

‖u‖2
L2∗ (Rn)

.

Completing C∞c (Rn), Sn is attained by ([Aubin, ’76], [Talenti, ’76])

Up,λ(x) :=
λ

n−2
2

(1 + λ2|x− p|2)
n−2
2

; p ∈ Rn, λ > 0.

• Since Sn is conformal to Rn, one has that Y (Sn, [gSn ]) = Sn.

Andrea Malchiodi (SNS, Pisa) Taipei, Jan. 20, 2018 4 / 26



The Sobolev quotient of domains of Rn

Also for a (say, bounded smooth) domain Ω ⊆ Rn one can consider the
Sobolev quotient for functions supported in Ω

inf
u∈C∞c (Ω)

∫
Rn cn|∇u|2dx
‖u‖2

L2∗ (Rn)

.

In this case the infimum coincides with Sn, but it is never attained
because of the lack of compactness of the embedding.

Minimizing sequences un tend to concentrate indefinitely inside Ω.

Ω

un
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Brief history on the Yamabe problem

- In 1960 Yamabe attempted to solve (Y ) by subcritical approximation.

- In 1968 Trudinger proved that (Y ) is solvable provided Y (M, [g]) ≤ εn
for some εn > 0. In particular when it is negative or zero.

- In 1976 Aubin proved that (Y ) is solvable provided Y (M, [g]) < Sn.
He also verified this inequality when n ≥ 6 and (M, g) is not locally
conformally flat, unless (M, g) ' (Sn, gSn).

- In 1984 Schoen proved that Y (M, [g]) < Sn in all other cases, i.e. n ≤ 5
or (M, g) locally conformally flat, unless (M, g) ' (Sn, gSn).
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On the inequality Y (M, [g]) < Sn

The inequality is proved using Aubin-Talenti’s functions. Given p ∈M ,

consider a conformal metric g̃ ' U
4

n−2

p,λ g with λ large. Since locally
(M, g) ' Rn and since Up,λ is highly concentrated, QSY (Up,λ) ' Sn,
with small correction terms due to the geometry of M .

Since Up,λ decays like 1
|x|n−2 at infinity, it is more localized in large dimen-

sion. Aubin proved that for n ≥ 6 the corrections are given by − |Wg |2(p)
λ4

,
a local quantity depending on the Weyl tensor.

For n ≤ 5 the correction is of global nature. Heuristics: if u ' Up,λ then

Lgu := −cn∆u+Rgu ' U
n+2
n−2

p,λ '
1

λ
δp.

At large scales an approximate solution looks like the Green’s function
Gp of the operator Lg. If Gp ' 1

|x|n−2 +A at p, the correction is −A/λn−2.
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A brief excursion in general relativity

To understand the value of A, general relativity comes into play.

A manifold (N3, g) is said to be asymptotically flat if it is a union of
a compact set K (possibly with topology), and such that N \ K is
diffeomorphic to R3 \B1(0). It is required that the metric satisfies

gij → δij at infinity (with some rate).

N

N \K

In general relativity these manifolds describe static gravitational systems.
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Some examples

Example 1: Schwartzschild metric. It describes a static black hole
of total mass m. In polar coordinates the expression is(

1 +
m

2r

)4 (
dr2 + r2dξ2

)
.

At r = m
2 there is a minimal surface, representing the event horizon.

Example 2: Conformal blow-ups. Given a compact Riemannian
three-manifold (M, g) and p ∈ M , one can consider a conformal metric
on g̃ on M \ {p} of the following form

g̃ = f(x) g; f(x) ' 1

d(x, p)4
.

Then, in normal coordinates x at p, setting y = x
|x|2 (Kelvin inversion)

one has an asymptotically flat manifold in y-coordinates

g̃(x) ' dx2

|x|4
' dy2, (y large).
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Einstein’s equation in vacuum

It governs the structure of space-time according to general relativity

Eij := Rij −
1

2
Rg gij = 0.

Here Rij is the Ricci tensor, and Rg the scalar curvature.

This equation is variational, with Euler-Lagrange functional given by

A(g) :=

∫
M
Rg dVg Einstein-Hilbert functional.

In fact, one has

d

dg
(Rg dVg) [h] = −

(
hijEij + div X

)
dVg,

where X is some vector field.
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The mass of an asymptotically flat manifold

If we consider variations that preserve asymptotic flatness, then the
divergence term has a role (flux at infinity), and

d

dg
(A(g) +m(g))[h] =

∫
M
hijEij dV.

The quantity m(g), called ADM mass ([ADM, ’60]), is defined as

m(g) := lim
r→∞

∮
Sr

(∂k gjk − ∂j gkk) νjdσ.

Example 1: Schwartzschild. mADM = black-hole mass.

Example 2: Conformal blow-ups. If Gp is the Green’s function of
an elliptic operator on M̂ with pole at p, then Gp(x) ' d(x, p)−1.
If f(x) = G4

p ' d(x, p)−4, then

mADM = lim
x→p

(
Gp(x)− 1

d(x, p)

)
= A.
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The Positive Mass Theorem

Theorem ([Schoen-Yau, ’79, ’81, ’17])

If Rg ≥ 0 then m(g) ≥ 0. In case m(g) = 0, then (M, g) is isometric to
the flat Euclidean space (R3, dx2).

The (first) proof used the construction of stable asymptotically planar
minimal surfaces assuming m < 0, obtaining then a contradiction from
the second variation formula using Rg ≥ 0.

In 1981 Witten (’81) used Dirac’s equation in a different proof, obtaining
an integral formula for the mass via the Bochner-Lichnerowitz identity.
Both approaches are fundamental to study manifolds with positive scalar
curvature ([Gromov-Lawson, ’80], [Stolz, ’92]).
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an integral formula for the mass via the Bochner-Lichnerowitz identity.
Both approaches are fundamental to study manifolds with positive scalar
curvature ([Gromov-Lawson, ’80], [Stolz, ’92]).

Andrea Malchiodi (SNS, Pisa) Taipei, Jan. 20, 2018 12 / 26



The Positive Mass Theorem

Theorem ([Schoen-Yau, ’79, ’81, ’17])

If Rg ≥ 0 then m(g) ≥ 0.

In case m(g) = 0, then (M, g) is isometric to
the flat Euclidean space (R3, dx2).

The (first) proof used the construction of stable asymptotically planar
minimal surfaces assuming m < 0, obtaining then a contradiction from
the second variation formula using Rg ≥ 0.

In 1981 Witten (’81) used Dirac’s equation in a different proof, obtaining
an integral formula for the mass via the Bochner-Lichnerowitz identity.
Both approaches are fundamental to study manifolds with positive scalar
curvature ([Gromov-Lawson, ’80], [Stolz, ’92]).

Andrea Malchiodi (SNS, Pisa) Taipei, Jan. 20, 2018 12 / 26



The Positive Mass Theorem

Theorem ([Schoen-Yau, ’79, ’81, ’17])

If Rg ≥ 0 then m(g) ≥ 0. In case m(g) = 0, then (M, g) is isometric to
the flat Euclidean space (R3, dx2).

The (first) proof used the construction of stable asymptotically planar
minimal surfaces assuming m < 0, obtaining then a contradiction from
the second variation formula using Rg ≥ 0.

In 1981 Witten (’81) used Dirac’s equation in a different proof, obtaining
an integral formula for the mass via the Bochner-Lichnerowitz identity.
Both approaches are fundamental to study manifolds with positive scalar
curvature ([Gromov-Lawson, ’80], [Stolz, ’92]).

Andrea Malchiodi (SNS, Pisa) Taipei, Jan. 20, 2018 12 / 26



The Positive Mass Theorem

Theorem ([Schoen-Yau, ’79, ’81, ’17])

If Rg ≥ 0 then m(g) ≥ 0. In case m(g) = 0, then (M, g) is isometric to
the flat Euclidean space (R3, dx2).

The (first) proof used the construction of stable asymptotically planar
minimal surfaces assuming m < 0, obtaining then a contradiction from
the second variation formula using Rg ≥ 0.

In 1981 Witten (’81) used Dirac’s equation in a different proof, obtaining
an integral formula for the mass via the Bochner-Lichnerowitz identity.
Both approaches are fundamental to study manifolds with positive scalar
curvature ([Gromov-Lawson, ’80], [Stolz, ’92]).

Andrea Malchiodi (SNS, Pisa) Taipei, Jan. 20, 2018 12 / 26



The Positive Mass Theorem

Theorem ([Schoen-Yau, ’79, ’81, ’17])

If Rg ≥ 0 then m(g) ≥ 0. In case m(g) = 0, then (M, g) is isometric to
the flat Euclidean space (R3, dx2).

The (first) proof used the construction of stable asymptotically planar
minimal surfaces assuming m < 0, obtaining then a contradiction from
the second variation formula using Rg ≥ 0.

In 1981 Witten (’81) used Dirac’s equation in a different proof, obtaining
an integral formula for the mass via the Bochner-Lichnerowitz identity.

Both approaches are fundamental to study manifolds with positive scalar
curvature ([Gromov-Lawson, ’80], [Stolz, ’92]).

Andrea Malchiodi (SNS, Pisa) Taipei, Jan. 20, 2018 12 / 26



The Positive Mass Theorem

Theorem ([Schoen-Yau, ’79, ’81, ’17])

If Rg ≥ 0 then m(g) ≥ 0. In case m(g) = 0, then (M, g) is isometric to
the flat Euclidean space (R3, dx2).

The (first) proof used the construction of stable asymptotically planar
minimal surfaces assuming m < 0, obtaining then a contradiction from
the second variation formula using Rg ≥ 0.

In 1981 Witten (’81) used Dirac’s equation in a different proof, obtaining
an integral formula for the mass via the Bochner-Lichnerowitz identity.
Both approaches are fundamental to study manifolds with positive scalar
curvature ([Gromov-Lawson, ’80], [Stolz, ’92]).

Andrea Malchiodi (SNS, Pisa) Taipei, Jan. 20, 2018 12 / 26



Around the Positive Mass Theorem

- Was used to solve Yamabe’s conjecture in low dimensions: Schoen con-
structed test functions with Yamabe quotient lower than on the sphere.

- Relation to Yamabe’s invariant (vaguely: the largest scalar curvature on
a given manifold). Leading to compactness and finite-topology theorems
([Bray-Neves, ’04], [Chang-Qing-Yang, ’07]).

- CMC foliations at infinity ([Huisken-Yau, ’96], [Qing-Tian, ’07]) and
and isoperimetric sets of large volume ([Eichmair-Metzger, ’13]).

- Relation to stability properties of minimal surfaces ([Carlotto, ’14],
[Carlotto-Chodosh-Eichmair, ’15]).
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CR manifolds

We deal with three-dimensional manifolds with a non-integrable two-
dimensional distribution (contact structure) ξ.

We also have a CR structure (complex rotation) J : ξ → ξ s.t. J2 = −1.

Given J as above, we have locally a vector field Z1 such that

JZ1 = iZ1; JZ1 = −iZ1 where Z1 = (Z1).

A contact form θ is a 1-form annihilating ξ: we assume that θ ∧ dθ 6= 0
everywhere on M (pseudoconvexity).

This condition is quite important for the study of biholomorphic map-
pings and the ∂-Neumann problem ([Beals-Fefferman-Grossman, ’83]).
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Examples

The Heisenberg group (flat model) H1 = {(z, t) ∈ C× R}. Setting

◦
Z1=

1√
2

(
∂

∂z
+ iz

∂

∂t

)
;

◦
Z1=

1√
2

(
∂

∂z
− iz ∂

∂t

)
,

ξ0 is spanned by real and imaginary parts of
◦
Z1. The standard CR

structure J0 : ξ0 → ξ0 verifies J0

◦
Z1= i

◦
Z1.

◦
θ= dt+ izdz − izdz.

Boundaries of complex domains. Consider Ω ⊂ C2 and J2 the stan-
dard complex rotation in C2. Given p ∈ ∂Ω one can consider the subset
ξp of Tp∂Ω which is invariant by J2. We take ξp as contact distribution,
and J |ξp as the CR structure J .
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The Webster curvature of a CR three-manifold

In 1983 Webster introduced differential-geometric tools to study the bi-
holomorphy problem. He defined in particular a scalar function W , the
Webster curvature, which behaves conformally like the scalar curvature.

Changing conformally the contact form, if θ̂ = u2θ, then Wθ̂ is given by

−4∆bu+Wθu = Wθ̂u
3.

Here ∆b is the sub-laplacian on M : the laplacian in the contact di-
rections. Since the contact distribution is non-integrable, one can use
Hörmander’s theory (commutators) to recover regularity. However the
non-contact direction counts twice (in Sobolev embeddings, etc.).

As before, we can define a Sobolev-Webster quotient and try to uniformize
W as we did for the scalar curvature. For n ≥ 5 Jerison and Lee (1989)
proved the counterparts of Trudinger and Aubin’s results.

Andrea Malchiodi (SNS, Pisa) Taipei, Jan. 20, 2018 16 / 26



The Webster curvature of a CR three-manifold

In 1983 Webster introduced differential-geometric tools to study the bi-
holomorphy problem.

He defined in particular a scalar function W , the
Webster curvature, which behaves conformally like the scalar curvature.

Changing conformally the contact form, if θ̂ = u2θ, then Wθ̂ is given by

−4∆bu+Wθu = Wθ̂u
3.

Here ∆b is the sub-laplacian on M : the laplacian in the contact di-
rections. Since the contact distribution is non-integrable, one can use
Hörmander’s theory (commutators) to recover regularity. However the
non-contact direction counts twice (in Sobolev embeddings, etc.).

As before, we can define a Sobolev-Webster quotient and try to uniformize
W as we did for the scalar curvature. For n ≥ 5 Jerison and Lee (1989)
proved the counterparts of Trudinger and Aubin’s results.

Andrea Malchiodi (SNS, Pisa) Taipei, Jan. 20, 2018 16 / 26



The Webster curvature of a CR three-manifold

In 1983 Webster introduced differential-geometric tools to study the bi-
holomorphy problem. He defined in particular a scalar function W , the
Webster curvature, which behaves conformally like the scalar curvature.

Changing conformally the contact form, if θ̂ = u2θ, then Wθ̂ is given by

−4∆bu+Wθu = Wθ̂u
3.

Here ∆b is the sub-laplacian on M : the laplacian in the contact di-
rections. Since the contact distribution is non-integrable, one can use
Hörmander’s theory (commutators) to recover regularity. However the
non-contact direction counts twice (in Sobolev embeddings, etc.).

As before, we can define a Sobolev-Webster quotient and try to uniformize
W as we did for the scalar curvature. For n ≥ 5 Jerison and Lee (1989)
proved the counterparts of Trudinger and Aubin’s results.

Andrea Malchiodi (SNS, Pisa) Taipei, Jan. 20, 2018 16 / 26



The Webster curvature of a CR three-manifold

In 1983 Webster introduced differential-geometric tools to study the bi-
holomorphy problem. He defined in particular a scalar function W , the
Webster curvature, which behaves conformally like the scalar curvature.

Changing conformally the contact form, if θ̂ = u2θ, then Wθ̂ is given by

−4∆bu+Wθu = Wθ̂u
3.

Here ∆b is the sub-laplacian on M : the laplacian in the contact di-
rections. Since the contact distribution is non-integrable, one can use
Hörmander’s theory (commutators) to recover regularity. However the
non-contact direction counts twice (in Sobolev embeddings, etc.).

As before, we can define a Sobolev-Webster quotient and try to uniformize
W as we did for the scalar curvature. For n ≥ 5 Jerison and Lee (1989)
proved the counterparts of Trudinger and Aubin’s results.

Andrea Malchiodi (SNS, Pisa) Taipei, Jan. 20, 2018 16 / 26



The Webster curvature of a CR three-manifold

In 1983 Webster introduced differential-geometric tools to study the bi-
holomorphy problem. He defined in particular a scalar function W , the
Webster curvature, which behaves conformally like the scalar curvature.

Changing conformally the contact form, if θ̂ = u2θ, then Wθ̂ is given by

−4∆bu+Wθu = Wθ̂u
3.

Here ∆b is the sub-laplacian on M : the laplacian in the contact di-
rections.

Since the contact distribution is non-integrable, one can use
Hörmander’s theory (commutators) to recover regularity. However the
non-contact direction counts twice (in Sobolev embeddings, etc.).

As before, we can define a Sobolev-Webster quotient and try to uniformize
W as we did for the scalar curvature. For n ≥ 5 Jerison and Lee (1989)
proved the counterparts of Trudinger and Aubin’s results.

Andrea Malchiodi (SNS, Pisa) Taipei, Jan. 20, 2018 16 / 26



The Webster curvature of a CR three-manifold

In 1983 Webster introduced differential-geometric tools to study the bi-
holomorphy problem. He defined in particular a scalar function W , the
Webster curvature, which behaves conformally like the scalar curvature.

Changing conformally the contact form, if θ̂ = u2θ, then Wθ̂ is given by

−4∆bu+Wθu = Wθ̂u
3.

Here ∆b is the sub-laplacian on M : the laplacian in the contact di-
rections. Since the contact distribution is non-integrable, one can use
Hörmander’s theory (commutators) to recover regularity.

However the
non-contact direction counts twice (in Sobolev embeddings, etc.).

As before, we can define a Sobolev-Webster quotient and try to uniformize
W as we did for the scalar curvature. For n ≥ 5 Jerison and Lee (1989)
proved the counterparts of Trudinger and Aubin’s results.

Andrea Malchiodi (SNS, Pisa) Taipei, Jan. 20, 2018 16 / 26



The Webster curvature of a CR three-manifold

In 1983 Webster introduced differential-geometric tools to study the bi-
holomorphy problem. He defined in particular a scalar function W , the
Webster curvature, which behaves conformally like the scalar curvature.

Changing conformally the contact form, if θ̂ = u2θ, then Wθ̂ is given by

−4∆bu+Wθu = Wθ̂u
3.

Here ∆b is the sub-laplacian on M : the laplacian in the contact di-
rections. Since the contact distribution is non-integrable, one can use
Hörmander’s theory (commutators) to recover regularity. However the
non-contact direction counts twice (in Sobolev embeddings, etc.).

As before, we can define a Sobolev-Webster quotient and try to uniformize
W as we did for the scalar curvature. For n ≥ 5 Jerison and Lee (1989)
proved the counterparts of Trudinger and Aubin’s results.

Andrea Malchiodi (SNS, Pisa) Taipei, Jan. 20, 2018 16 / 26



The Webster curvature of a CR three-manifold

In 1983 Webster introduced differential-geometric tools to study the bi-
holomorphy problem. He defined in particular a scalar function W , the
Webster curvature, which behaves conformally like the scalar curvature.

Changing conformally the contact form, if θ̂ = u2θ, then Wθ̂ is given by

−4∆bu+Wθu = Wθ̂u
3.

Here ∆b is the sub-laplacian on M : the laplacian in the contact di-
rections. Since the contact distribution is non-integrable, one can use
Hörmander’s theory (commutators) to recover regularity. However the
non-contact direction counts twice (in Sobolev embeddings, etc.).

As before, we can define a Sobolev-Webster quotient and try to uniformize
W as we did for the scalar curvature.

For n ≥ 5 Jerison and Lee (1989)
proved the counterparts of Trudinger and Aubin’s results.

Andrea Malchiodi (SNS, Pisa) Taipei, Jan. 20, 2018 16 / 26



The Webster curvature of a CR three-manifold

In 1983 Webster introduced differential-geometric tools to study the bi-
holomorphy problem. He defined in particular a scalar function W , the
Webster curvature, which behaves conformally like the scalar curvature.

Changing conformally the contact form, if θ̂ = u2θ, then Wθ̂ is given by

−4∆bu+Wθu = Wθ̂u
3.

Here ∆b is the sub-laplacian on M : the laplacian in the contact di-
rections. Since the contact distribution is non-integrable, one can use
Hörmander’s theory (commutators) to recover regularity. However the
non-contact direction counts twice (in Sobolev embeddings, etc.).

As before, we can define a Sobolev-Webster quotient and try to uniformize
W as we did for the scalar curvature. For n ≥ 5 Jerison and Lee (1989)
proved the counterparts of Trudinger and Aubin’s results.

Andrea Malchiodi (SNS, Pisa) Taipei, Jan. 20, 2018 16 / 26



Green’s function and mass in three dimensions (CR)

From now on, suppose the infimum of the Sobolev-Webster quotient is
positive (otherwise minimizers trivially exist).

In 3D the Green’s function still appears. In suitable coordinates at p ∈M

Gp '
1

ρ2
+A,

where ρ4(z, t) = |z|4 + t2, (z, t) ∈ H1 is the homogeneous distance.
Blowing-up the contact form θ using Gp, we obtain an asymptotically
(Heisenberg) flat manifold and define its mass, proportional to A.

However, things start to get different in the CR case. One crucial diffe-
rence between dimension three and higher is the embeddability of abstract
CR manifolds (reference book: [Chen-Shaw, ’01]).
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The Paneitz operator

The CR Paneitz operator P is a fourth-order operator defined by

Pϕ := 4(ϕ,1̄11 + iA11ϕ,1̄)1̄ + conj.

It characterizes the structure of CR functions ([Lee, ’88], [Case-Chanillo-
Yang, ’14], [Hirachi, ’93]). Moreover

Pθ̂ = e−4fPθ if θ̂ = e2fθ.

The Paneitz operator enters in the assumptions of the following embed-
dability theorem.

Theorem ([Chanillo-Chiu-Yang, ’12]) Let M3 be a compact CR
manifold. If P ≥ 0 and W > 0, then M embeds into some CN .
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An integral formula for the mass

Proposition Let (N, J, θ) be asymptotically-Heisenberg, and suppose a
complex function β on N behaves like z at infinity. Then one has

2

3
m(J, θ) = −4

∫
N
|Z1Z1β|

2dVθ + 2

∫
N
|Z1Z1β|

2dVθ

+ 2

∫
N
W |Z1β|

2dVθ +
1

2

∫
N
βPθβ dVθ.

The proof uses (a tricky) integration by parts, and the main idea is to
bring in the higher order term involving the Paneitz operator Pθ.

The only obstruction to the positivity is the first term: however by a
recent theorem in [Hsiao-Yung, ’15] one can kill Z1Z1β starting from an
approximate solution decaying sufficiently fast at ∞.
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A positive mass theorem

Theorem ([Cheng-M.-Yang, ’17])

Let (M3, J, θ) be a compact CR manifold. Suppose the Webster class is
positive, and that the CR Paneitz operator is non-negative. Let p ∈ M
and let θ̃ be a blown-up of contact form at p. Then

(a) the CR mass of (M,J, θ̃) is non negative;

(b) if the mass is zero, M is CR-equivalent to the standard S3(' H1).

• Again, the CR mass is proportional to A, the constant term appearing
in the expansion of the Green’s function.

• m > 0 implies that the Sobolev quotient of (M,J) is lower than that of
S3, so minimizers exist. Non-minimal solutions were found in [Gamara
(et al.), ’01], flow approach in [Chang-Cheng, ’02], [Ho, ’12].

• Positivity is proved in higher dimensions in [Cheng-Chiu-Yang, ’14] for
locally spherical manifolds, and in [Cheng-Chiu, w.i.p.] for n = 5.
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On the positivity condition for the Paneitz operator

Consider the standard sphere S3 in C2. It turns out that most pertur-
bations of its CR structure are non embeddable ([Burns-Epstein, ’90]).
In these cases the Paneitz operator cannot be positive-definite.

Theorem ([Cheng-M.-Yang, ’17])

There exist CR structures on S3 (arbitrarily close to the standard one)
with positive Webster curvature and negative CR mass.

An interesting case are Rossi spheres S3
s ([H.Rossi, ’65]): these have

the same contact structure as the standard S3 but a distorted complex
rotation J , and are homogeneous. They can be smoothly deformed to
the standard S3 via some parameter s ∈ (−ε, ε).
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CR Sobolev quotient of Rossi spheres

Theorem ([Cheng-M.-Yang, w.i.p.])
For small s 6= 0 the infimum of the Sobolev-Webster quotient of Rossi
spheres is not attained (and is equal to that of the standard S3).

Sketch of the proof.

- If a function has low Sobolev-Webster quotient on a Rossi sphere S3
s it

has low Sobolev-Webster quotient also on the standard S3 = S3
0 .

- Minima for the Webster quotient on the standard S3 were classifed in
[Jerison-Lee, ’88] as (CR counterparts of) Aubin-Talenti functions.

- For |s| 6= 0 small, the Webster quotient of the functions UCRλ has a
profile of this kind, for λ in a fixed compact set of (0,∞)

0

Qs
SW (UCR

λ )

λ
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CR Sobolev quotient of Rossi spheres

It remains to understand the case in which minimizers were close in the
Sobolev sense to functions UCRλ with λ large (λ small is analogous).

Blow-up analysis shows that a sequence of minimizers would resemble
the Green’s function Gsp of the sub-Laplacian on the Rossi sphere.

Proposition

For small s 6= 0, the CR mass of S3
s is negative (ms ' −3

2πs
2).

Recalling that the mass gives the constant term in the expansion of Gsp,
a contradiction is reached by a Kazdan-Warner identity.

Remark. The CR Sobolev quotient of S3
s , a closed manifold, behaves

like that of a domain in Rn!
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Some open problems

It would be interesting to see whether minimal surfaces in CR manifolds
([Cheng-Hwang-M.-Yang, ’05]) might have a role in studying the mass.

Another problem recently settled is the compactness of solutions to Ya-
mabe’s equation ([Brendle-Marques, ’08], [Khuri-Marques-Schoen, ’09]).
Compactness holds if and only if n ≤ 24. The compactness issue for the
Webster-Yamabe problem is entirely open.

One reason is that the profile of blow-ups has not been classified. This
concerns entire positive solutions to

−∆bu = u
Q+2
Q−2 in Hn; Q = 2n+ 2.

Assuming finite volume, it is done in [Jerison-Lee, ’88]. However blow-up
profiles may not satisfy this assumption, and Moving planes do not work.
Related Liouville thms. in [Birindelli-Capuzzo Dolcetta-Cutrì, 97].
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mabe’s equation ([Brendle-Marques, ’08], [Khuri-Marques-Schoen, ’09]).
Compactness holds if and only if n ≤ 24. The compactness issue for the
Webster-Yamabe problem is entirely open.

One reason is that the profile of blow-ups has not been classified. This
concerns entire positive solutions to

−∆bu = u
Q+2
Q−2 in Hn; Q = 2n+ 2.

Assuming finite volume, it is done in [Jerison-Lee, ’88]. However blow-up
profiles may not satisfy this assumption, and Moving planes do not work.
Related Liouville thms. in [Birindelli-Capuzzo Dolcetta-Cutrì, 97].
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Penrose’s inequality gives quantitative lower bounds on the ADM mass
in terms of outward minimal surfaces

M outward minimal

non outward minimal

IfA is the total area of the outward minimal surfaces, Penrose’s inequality
asserts that m ≥

√
A

16π .

The inequality was proved in [Huisken-Ilmanen, ’01], [Bray, ’01] using
geometric flows. Are there any analogues in the CR case?

In the CR case, is it possible always true that negative mass implies that
the Sobolev quotient is not attained?
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Thanks for the attention

Happy Birthday Alice and Paul!
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