On the Sobolev quotient in CR geometry

Joint work with J.H.Cheng and P.Yang

Andrea Malchiodi (SNS, Pisa)

Taipei, Jan. 20, 2018

The Yamabe problem

The Yamabe problem

A standard problem in Differential Geometry is to find special metrics on a given manifold $\left(M^{n}, g\right)$ (compact).

The Yamabe problem

A standard problem in Differential Geometry is to find special metrics on a given manifold (M^{n}, g) (compact). One way is to consider conformal deformations, scaling a metric $g(x)$ by a positive function $\lambda(x)$.

The Yamabe problem

A standard problem in Differential Geometry is to find special metrics on a given manifold (M^{n}, g) (compact). One way is to consider conformal deformations, scaling a metric $g(x)$ by a positive function $\lambda(x)$.

For $n=2$ by the Uniformization theorem (Klein-Koebe-Poincaré) one can always find conformal metrics with constant Gaussian curvature.

The Yamabe problem

A standard problem in Differential Geometry is to find special metrics on a given manifold (M^{n}, g) (compact). One way is to consider conformal deformations, scaling a metric $g(x)$ by a positive function $\lambda(x)$.

For $n=2$ by the Uniformization theorem (Klein-Koebe-Poincaré) one can always find conformal metrics with constant Gaussian curvature.

For $n \geq 3$ Yamabe posed the problem of finding conformal metrics with constant scalar curvature, as a step to solve Poincaré's conjecture.

The Yamabe problem

A standard problem in Differential Geometry is to find special metrics on a given manifold (M^{n}, g) (compact). One way is to consider conformal deformations, scaling a metric $g(x)$ by a positive function $\lambda(x)$.

For $n=2$ by the Uniformization theorem (Klein-Koebe-Poincaré) one can always find conformal metrics with constant Gaussian curvature.

For $n \geq 3$ Yamabe posed the problem of finding conformal metrics with constant scalar curvature, as a step to solve Poincaré's conjecture.

If R_{g} is the scalar curvature, setting $\tilde{g}(x)=\lambda(x) g(x)=u(x)^{\frac{4}{n-2}} g(x)$, $u(x)$ one has to find on M a positive solution of
$(Y) \quad-c_{n} \Delta u+R_{g} u=\bar{R} u^{\frac{n+2}{n-2}} ; \quad c_{n}=4 \frac{n-1}{n-2}, \quad \bar{R} \in \mathbb{R}$.

The Sobolev-Yamabe quotient

The Sobolev-Yamabe quotient

Suppose from now on that M is compact, and recall the equation

$$
(Y) \quad-c_{n} \Delta u+R_{g} u=\bar{R} u^{\frac{n+2}{n-2}} ; \quad c_{n}=4 \frac{n-1}{n-2}, \quad \bar{R} \in \mathbb{R} .
$$

The Sobolev-Yamabe quotient

Suppose from now on that M is compact, and recall the equation $(Y) \quad-c_{n} \Delta u+R_{g} u=\bar{R} u^{\frac{n+2}{n-2}} ; \quad c_{n}=4 \frac{n-1}{n-2}, \quad \bar{R} \in \mathbb{R}$.

Considering \bar{R} as a Lagrange multiplier, one can try to find solutions by minimizing the Sobolev-Yamabe quotient

$$
Q_{S Y}(u)=\frac{\int_{M}\left(c_{n}|\nabla u|^{2}+R_{g} u^{2}\right) d V}{\left(\int_{M}|u|^{2^{*}} d V\right)^{\frac{2}{2^{*}}}} ; \quad 2^{*}=\frac{2 n}{n-2}
$$

The Sobolev-Yamabe quotient

Suppose from now on that M is compact, and recall the equation $(Y) \quad-c_{n} \Delta u+R_{g} u=\bar{R} u^{\frac{n+2}{n-2}} ; \quad c_{n}=4 \frac{n-1}{n-2}, \quad \bar{R} \in \mathbb{R}$.

Considering \bar{R} as a Lagrange multiplier, one can try to find solutions by minimizing the Sobolev-Yamabe quotient

$$
Q_{S Y}(u)=\frac{\int_{M}\left(c_{n}|\nabla u|^{2}+R_{g} u^{2}\right) d V}{\left(\int_{M}|u|^{2^{*}} d V\right)^{\frac{2}{2^{*}}}} ; \quad 2^{*}=\frac{2 n}{n-2}
$$

The Sobolev-Yamabe constant is defined as

$$
Y(M,[g])=\inf _{u \neq 0} Q_{S Y}(u) .
$$

The Sobolev quotient in $\mathbb{R}^{n}(n \geq 3)$

The Sobolev quotient in $\mathbb{R}^{n}(n \geq 3)$

Recall the Sobolev-Gagliardo-Nirenberg inequality in \mathbb{R}^{n}

$$
\|u\|_{L^{2^{*}}\left(\mathbb{R}^{n}\right)}^{2} \leq B_{n} \int_{\mathbb{R}^{n}}|\nabla u|^{2} d x ; \quad u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)
$$

The Sobolev quotient in $\mathbb{R}^{n}(n \geq 3)$

Recall the Sobolev-Gagliardo-Nirenberg inequality in \mathbb{R}^{n}

$$
\|u\|_{L^{2^{*}\left(\mathbb{R}^{n}\right)}}^{2} \leq B_{n} \int_{\mathbb{R}^{n}}|\nabla u|^{2} d x ; \quad u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)
$$

As for $Y(M,[g])$, define the Sobolev quotient $S_{n}=\inf _{u} \frac{\int_{\mathbb{R}^{n}} c_{n}|\nabla u|^{2} d x}{\|u\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}}$.

The Sobolev quotient in $\mathbb{R}^{n}(n \geq 3)$

Recall the Sobolev-Gagliardo-Nirenberg inequality in \mathbb{R}^{n}

$$
\|u\|_{L^{2^{*}}\left(\mathbb{R}^{n}\right)}^{2} \leq B_{n} \int_{\mathbb{R}^{n}}|\nabla u|^{2} d x ; \quad u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)
$$

As for $Y(M,[g])$, define the Sobolev quotient $S_{n}=\inf _{u} \frac{\int_{\mathbb{R}^{n} c} c_{n}|\nabla u|^{2} d x}{\|u\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}}$.
Completing $C_{c}^{\infty}\left(\mathbb{R}^{n}\right), S_{n}$ is attained by ([Aubin, '76], [Talenti, '76])

$$
U_{p, \lambda}(x):=\frac{\lambda^{\frac{n-2}{2}}}{\left(1+\lambda^{2}|x-p|^{2}\right)^{\frac{n-2}{2}}} ; \quad p \in \mathbb{R}^{n}, \lambda>0
$$

The Sobolev quotient in $\mathbb{R}^{n}(n \geq 3)$

Recall the Sobolev-Gagliardo-Nirenberg inequality in \mathbb{R}^{n}

$$
\|u\|_{L^{2^{*}}\left(\mathbb{R}^{n}\right)}^{2} \leq B_{n} \int_{\mathbb{R}^{n}}|\nabla u|^{2} d x ; \quad u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)
$$

As for $Y(M,[g])$, define the Sobolev quotient $S_{n}=\inf _{u} \frac{\int_{\mathbb{R}^{n} c} c_{n}|\nabla u|^{2} d x}{\|u\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}}$.
Completing $C_{c}^{\infty}\left(\mathbb{R}^{n}\right), S_{n}$ is attained by ([Aubin, '76], [Talenti, '76])

$$
U_{p, \lambda}(x):=\frac{\lambda^{\frac{n-2}{2}}}{\left(1+\lambda^{2}|x-p|^{2}\right)^{\frac{n-2}{2}}} ; \quad p \in \mathbb{R}^{n}, \lambda>0
$$

- Since S^{n} is conformal to \mathbb{R}^{n}, one has that $Y\left(S^{n},\left[g_{S^{n}}\right]\right)=S_{n}$.

The Sobolev quotient of domains of \mathbb{R}^{n}

The Sobolev quotient of domains of \mathbb{R}^{n}

Also for a (say, bounded smooth) domain $\Omega \subseteq \mathbb{R}^{n}$ one can consider the Sobolev quotient for functions supported in Ω

$$
\inf _{u \in C_{c}^{\infty}(\Omega)} \frac{\int_{\mathbb{R}^{n}} c_{n}|\nabla u|^{2} d x}{\|u\|_{L^{2^{*}}\left(\mathbb{R}^{n}\right)}^{2}} .
$$

The Sobolev quotient of domains of \mathbb{R}^{n}

Also for a (say, bounded smooth) domain $\Omega \subseteq \mathbb{R}^{n}$ one can consider the Sobolev quotient for functions supported in Ω

$$
\inf _{u \in C_{c}^{\infty}(\Omega)} \frac{\int_{\mathbb{R}^{n}} c_{n}|\nabla u|^{2} d x}{\|u\|_{L^{2^{*}}\left(\mathbb{R}^{n}\right)}^{2}} .
$$

In this case the infimum coincides with S_{n}, but it is never attained because of the lack of compactness of the embedding.

The Sobolev quotient of domains of \mathbb{R}^{n}

Also for a (say, bounded smooth) domain $\Omega \subseteq \mathbb{R}^{n}$ one can consider the Sobolev quotient for functions supported in Ω

$$
\inf _{u \in C_{c}^{\infty}(\Omega)} \frac{\int_{\mathbb{R}^{n}} c_{n}|\nabla u|^{2} d x}{\|u\|_{L^{2^{*}}\left(\mathbb{R}^{n}\right)}^{2}} .
$$

In this case the infimum coincides with S_{n}, but it is never attained because of the lack of compactness of the embedding.

Minimizing sequences u_{n} tend to concentrate indefinitely inside Ω.

Brief history on the Yamabe problem

Brief history on the Yamabe problem

- In 1960 Yamabe attempted to solve (Y) by subcritical approximation.

Brief history on the Yamabe problem

- In 1960 Yamabe attempted to solve (Y) by subcritical approximation.
- In 1968 Trudinger proved that (Y) is solvable provided $Y(M,[g]) \leq \varepsilon_{n}$ for some $\varepsilon_{n}>0$.

Brief history on the Yamabe problem

- In 1960 Yamabe attempted to solve (Y) by subcritical approximation.
- In 1968 Trudinger proved that (Y) is solvable provided $Y(M,[g]) \leq \varepsilon_{n}$ for some $\varepsilon_{n}>0$. In particular when it is negative or zero.

Brief history on the Yamabe problem

- In 1960 Yamabe attempted to solve (Y) by subcritical approximation.
- In 1968 Trudinger proved that (Y) is solvable provided $Y(M,[g]) \leq \varepsilon_{n}$ for some $\varepsilon_{n}>0$. In particular when it is negative or zero.
- In 1976 Aubin proved that (Y) is solvable provided $Y(M,[g])<S_{n}$.

Brief history on the Yamabe problem

- In 1960 Yamabe attempted to solve (Y) by subcritical approximation.
- In 1968 Trudinger proved that (Y) is solvable provided $Y(M,[g]) \leq \varepsilon_{n}$ for some $\varepsilon_{n}>0$. In particular when it is negative or zero.
- In 1976 Aubin proved that (Y) is solvable provided $Y(M,[g])<S_{n}$. He also verified this inequality when $n \geq 6$ and (M, g) is not locally conformally flat, unless $(M, g) \simeq\left(S^{n}, g_{S^{n}}\right)$.

Brief history on the Yamabe problem

- In 1960 Yamabe attempted to solve (Y) by subcritical approximation.
- In 1968 Trudinger proved that (Y) is solvable provided $Y(M,[g]) \leq \varepsilon_{n}$ for some $\varepsilon_{n}>0$. In particular when it is negative or zero.
- In 1976 Aubin proved that (Y) is solvable provided $Y(M,[g])<S_{n}$. He also verified this inequality when $n \geq 6$ and (M, g) is not locally conformally flat, unless $(M, g) \simeq\left(S^{n}, g_{S^{n}}\right)$.
- In 1984 Schoen proved that $Y(M,[g])<S_{n}$ in all other cases, i.e. $n \leq 5$ or (M, g) locally conformally flat, unless $(M, g) \simeq\left(S^{n}, g_{S^{n}}\right)$.

On the inequality $Y(M,[g])<S_{n}$

On the inequality $Y(M,[g])<S_{n}$

The inequality is proved using Aubin-Talenti's functions.

On the inequality $Y(M,[g])<S_{n}$

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p, \lambda}^{\frac{4}{n-2}} g$ with λ large.

On the inequality $Y(M,[g])<S_{n}$

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p, \lambda}^{\frac{4}{n-2}} g$ with λ large. Since locally $(M, g) \simeq \mathbb{R}^{n}$ and since $U_{p, \lambda}$ is highly concentrated, $Q_{S Y}\left(U_{p, \lambda}\right) \simeq S_{n}$, with small correction terms due to the geometry of M.

On the inequality $Y(M,[g])<S_{n}$

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p, \lambda}^{\frac{4}{n-2}} g$ with λ large. Since locally $(M, g) \simeq \mathbb{R}^{n}$ and since $U_{p, \lambda}$ is highly concentrated, $Q_{S Y}\left(U_{p, \lambda}\right) \simeq S_{n}$, with small correction terms due to the geometry of M.

Since $U_{p, \lambda}$ decays like $\frac{1}{|x|^{n-2}}$ at infinity, it is more localized in large dimension.

On the inequality $Y(M,[g])<S_{n}$

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p, \lambda}^{\frac{4}{n-2}} g$ with λ large. Since locally $(M, g) \simeq \mathbb{R}^{n}$ and since $U_{p, \lambda}$ is highly concentrated, $Q_{S Y}\left(U_{p, \lambda}\right) \simeq S_{n}$, with small correction terms due to the geometry of M.

Since $U_{p, \lambda}$ decays like $\frac{1}{|x|^{n-2}}$ at infinity, it is more localized in large dimension. Aubin proved that for $n \geq 6$ the corrections are given by $-\frac{\left|W_{g}\right|^{2}(p)}{\lambda^{4}}$, a local quantity depending on the Weyl tensor.

On the inequality $Y(M,[g])<S_{n}$

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p, \lambda}^{\frac{4}{n-2}} g$ with λ large. Since locally $(M, g) \simeq \mathbb{R}^{n}$ and since $U_{p, \lambda}$ is highly concentrated, $Q_{S Y}\left(U_{p, \lambda}\right) \simeq S_{n}$, with small correction terms due to the geometry of M.

Since $U_{p, \lambda}$ decays like $\frac{1}{|x|^{n-2}}$ at infinity, it is more localized in large dimension. Aubin proved that for $n \geq 6$ the corrections are given by $-\frac{\left|W_{g}\right|^{2}(p)}{\lambda^{4}}$, a local quantity depending on the Weyl tensor.

For $n \leq 5$ the correction is of global nature.

On the inequality $Y(M,[g])<S_{n}$

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p, \lambda}^{\frac{4}{n-2}} g$ with λ large. Since locally $(M, g) \simeq \mathbb{R}^{n}$ and since $U_{p, \lambda}$ is highly concentrated, $Q_{S Y}\left(U_{p, \lambda}\right) \simeq S_{n}$, with small correction terms due to the geometry of M.

Since $U_{p, \lambda}$ decays like $\frac{1}{|x|^{n-2}}$ at infinity, it is more localized in large dimension. Aubin proved that for $n \geq 6$ the corrections are given by $-\frac{\left|W_{g}\right|^{2}(p)}{\lambda^{4}}$, a local quantity depending on the Weyl tensor.

For $n \leq 5$ the correction is of global nature. Heuristics:

On the inequality $Y(M,[g])<S_{n}$

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p, \lambda}^{\frac{4}{n-2}} g$ with λ large. Since locally $(M, g) \simeq \mathbb{R}^{n}$ and since $U_{p, \lambda}$ is highly concentrated, $Q_{S Y}\left(U_{p, \lambda}\right) \simeq S_{n}$, with small correction terms due to the geometry of M.

Since $U_{p, \lambda}$ decays like $\frac{1}{|x|^{n-2}}$ at infinity, it is more localized in large dimension. Aubin proved that for $n \geq 6$ the corrections are given by $-\frac{\left|W_{g}\right|^{2}(p)}{\lambda^{4}}$, a local quantity depending on the Weyl tensor.

For $n \leq 5$ the correction is of global nature. Heuristics: if $u \simeq U_{p, \lambda}$ then

$$
L_{g} u:=-c_{n} \Delta u+R_{g} u \simeq U_{p, \lambda}^{\frac{n+2}{n-2}} \simeq \frac{1}{\lambda} \delta_{p} .
$$

On the inequality $Y(M,[g])<S_{n}$

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p, \lambda}^{\frac{4}{n-2}} g$ with λ large. Since locally $(M, g) \simeq \mathbb{R}^{n}$ and since $U_{p, \lambda}$ is highly concentrated, $Q_{S Y}\left(U_{p, \lambda}\right) \simeq S_{n}$, with small correction terms due to the geometry of M.

Since $U_{p, \lambda}$ decays like $\frac{1}{|x|^{n-2}}$ at infinity, it is more localized in large dimension. Aubin proved that for $n \geq 6$ the corrections are given by $-\frac{\left|W_{g}\right|^{2}(p)}{\lambda^{4}}$, a local quantity depending on the Weyl tensor.

For $n \leq 5$ the correction is of global nature. Heuristics: if $u \simeq U_{p, \lambda}$ then

$$
L_{g} u:=-c_{n} \Delta u+R_{g} u \simeq U_{p, \lambda}^{\frac{n+2}{n-2}} \simeq \frac{1}{\lambda} \delta_{p} .
$$

At large scales an approximate solution looks like the Green's function G_{p} of the operator L_{g}.

On the inequality $Y(M,[g])<S_{n}$

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p, \lambda}^{\frac{4}{n-2}} g$ with λ large. Since locally $(M, g) \simeq \mathbb{R}^{n}$ and since $U_{p, \lambda}$ is highly concentrated, $Q_{S Y}\left(U_{p, \lambda}\right) \simeq S_{n}$, with small correction terms due to the geometry of M.

Since $U_{p, \lambda}$ decays like $\frac{1}{|x|^{n-2}}$ at infinity, it is more localized in large dimension. Aubin proved that for $n \geq 6$ the corrections are given by $-\frac{\left|W_{g}\right|^{2}(p)}{\lambda^{4}}$, a local quantity depending on the Weyl tensor.

For $n \leq 5$ the correction is of global nature. Heuristics: if $u \simeq U_{p, \lambda}$ then

$$
L_{g} u:=-c_{n} \Delta u+R_{g} u \simeq U_{p, \lambda}^{\frac{n+2}{n-2}} \simeq \frac{1}{\lambda} \delta_{p} .
$$

At large scales an approximate solution looks like the Green's function G_{p} of the operator L_{g}. If $G_{p} \simeq \frac{1}{|x|^{n-2}}+A$ at p, the correction is $-A / \lambda_{\overline{\underline{B}}^{n-2}}$.

A brief excursion in general relativity

A brief excursion in general relativity

To understand the value of A, general relativity comes into play.

A brief excursion in general relativity

To understand the value of A, general relativity comes into play.
A manifold $\left(N^{3}, g\right)$ is said to be asymptotically flat if it is a union of a compact set K (possibly with topology), and such that $N \backslash K$ is diffeomorphic to $\mathbb{R}^{3} \backslash B_{1}(0)$.

A brief excursion in general relativity

To understand the value of A, general relativity comes into play.
A manifold $\left(N^{3}, g\right)$ is said to be asymptotically flat if it is a union of a compact set K (possibly with topology), and such that $N \backslash K$ is diffeomorphic to $\mathbb{R}^{3} \backslash B_{1}(0)$. It is required that the metric satisfies

$$
g_{i j} \rightarrow \delta_{i j} \quad \text { at infinity } \quad \text { (with some rate). }
$$

A brief excursion in general relativity

To understand the value of A, general relativity comes into play.
A manifold $\left(N^{3}, g\right)$ is said to be asymptotically flat if it is a union of a compact set K (possibly with topology), and such that $N \backslash K$ is diffeomorphic to $\mathbb{R}^{3} \backslash B_{1}(0)$. It is required that the metric satisfies

$$
g_{i j} \rightarrow \delta_{i j} \quad \text { at infinity } \quad \text { (with some rate). }
$$

In general relativity these manifolds describe static gravitational systems.

Some examples

Some examples

Example 1: Schwartzschild metric.

Some examples

Example 1: Schwartzschild metric. It describes a static black hole of total mass m.

Some examples

Example 1: Schwartzschild metric. It describes a static black hole of total mass m. In polar coordinates the expression is

$$
\left(1+\frac{m}{2 r}\right)^{4}\left(d r^{2}+r^{2} d \xi^{2}\right)
$$

Some examples

Example 1: Schwartzschild metric. It describes a static black hole of total mass m. In polar coordinates the expression is

$$
\left(1+\frac{m}{2 r}\right)^{4}\left(d r^{2}+r^{2} d \xi^{2}\right)
$$

At $r=\frac{m}{2}$ there is a minimal surface, representing the event horizon.

Some examples

Example 1: Schwartzschild metric. It describes a static black hole of total mass m. In polar coordinates the expression is

$$
\left(1+\frac{m}{2 r}\right)^{4}\left(d r^{2}+r^{2} d \xi^{2}\right)
$$

At $r=\frac{m}{2}$ there is a minimal surface, representing the event horizon.

Example 2: Conformal blow-ups.

Some examples

Example 1: Schwartzschild metric. It describes a static black hole of total mass m. In polar coordinates the expression is

$$
\left(1+\frac{m}{2 r}\right)^{4}\left(d r^{2}+r^{2} d \xi^{2}\right)
$$

At $r=\frac{m}{2}$ there is a minimal surface, representing the event horizon.

Example 2: Conformal blow-ups. Given a compact Riemannian three-manifold (M, g) and $p \in M$, one can consider a conformal metric on \tilde{g} on $M \backslash\{p\}$ of the following form

$$
\tilde{g}=f(x) g ; \quad f(x) \simeq \frac{1}{d(x, p)^{4}}
$$

Some examples

Example 1: Schwartzschild metric. It describes a static black hole of total mass m. In polar coordinates the expression is

$$
\left(1+\frac{m}{2 r}\right)^{4}\left(d r^{2}+r^{2} d \xi^{2}\right)
$$

At $r=\frac{m}{2}$ there is a minimal surface, representing the event horizon.

Example 2: Conformal blow-ups. Given a compact Riemannian three-manifold (M, g) and $p \in M$, one can consider a conformal metric on \tilde{g} on $M \backslash\{p\}$ of the following form

$$
\tilde{g}=f(x) g ; \quad f(x) \simeq \frac{1}{d(x, p)^{4}}
$$

Then, in normal coordinates x at p, setting $y=\frac{x}{|x|^{2}}$ (Kelvin inversion) one has an asymptotically flat manifold in y-coordinates

$$
\tilde{g}(x) \simeq \frac{d x^{2}}{|x|^{4}} \simeq d y^{2}, \quad(y \text { large })
$$

Einstein's equation in vacuum

Einstein's equation in vacuum

It governs the structure of space-time according to general relativity

Einstein's equation in vacuum

It governs the structure of space-time according to general relativity

$$
E_{i j}:=R_{i j}-\frac{1}{2} R_{g} g_{i j}=0
$$

Einstein's equation in vacuum

It governs the structure of space-time according to general relativity

$$
E_{i j}:=R_{i j}-\frac{1}{2} R_{g} g_{i j}=0 .
$$

Here $R_{i j}$ is the Ricci tensor, and R_{g} the scalar curvature.

Einstein's equation in vacuum

It governs the structure of space-time according to general relativity

$$
E_{i j}:=R_{i j}-\frac{1}{2} R_{g} g_{i j}=0
$$

Here $R_{i j}$ is the Ricci tensor, and R_{g} the scalar curvature.
This equation is variational, with Euler-Lagrange functional given by

$$
\mathcal{A}(g):=\int_{M} R_{g} d V_{g} \quad \text { Einstein-Hilbert functional. }
$$

Einstein's equation in vacuum

It governs the structure of space-time according to general relativity

$$
E_{i j}:=R_{i j}-\frac{1}{2} R_{g} g_{i j}=0
$$

Here $R_{i j}$ is the Ricci tensor, and R_{g} the scalar curvature.
This equation is variational, with Euler-Lagrange functional given by

$$
\mathcal{A}(g):=\int_{M} R_{g} d V_{g} \quad \text { Einstein-Hilbert functional. }
$$

In fact, one has

$$
\frac{d}{d g}\left(R_{g} d V_{g}\right)[h]=-\left(h^{i j} E_{i j}+\operatorname{div} X\right) d V_{g}
$$

where X is some vector field.

The mass of an asymptotically flat manifold

The mass of an asymptotically flat manifold

If we consider variations that preserve asymptotic flatness, then the divergence term has a role

The mass of an asymptotically flat manifold

If we consider variations that preserve asymptotic flatness, then the divergence term has a role (flux at infinity)

The mass of an asymptotically flat manifold

If we consider variations that preserve asymptotic flatness, then the divergence term has a role (flux at infinity), and

$$
\frac{d}{d g}(\mathcal{A}(g)+m(g))[h]=\int_{M} h^{i j} E_{i j} d V .
$$

The mass of an asymptotically flat manifold

If we consider variations that preserve asymptotic flatness, then the divergence term has a role (flux at infinity), and

$$
\frac{d}{d g}(\mathcal{A}(g)+m(g))[h]=\int_{M} h^{i j} E_{i j} d V
$$

The quantity $m(g)$, called $A D M$ mass ([ADM, '60]), is defined as

$$
m(g):=\lim _{r \rightarrow \infty} \oint_{S_{r}}\left(\partial_{k} g_{j k}-\partial_{j} g_{k k}\right) \nu^{j} d \sigma
$$

The mass of an asymptotically flat manifold

If we consider variations that preserve asymptotic flatness, then the divergence term has a role (flux at infinity), and

$$
\frac{d}{d g}(\mathcal{A}(g)+m(g))[h]=\int_{M} h^{i j} E_{i j} d V
$$

The quantity $m(g)$, called ADM mass ([ADM, '60]), is defined as

$$
m(g):=\lim _{r \rightarrow \infty} \oint_{S_{r}}\left(\partial_{k} g_{j k}-\partial_{j} g_{k k}\right) \nu^{j} d \sigma
$$

Example 1: Schwartzschild. $m_{A D M}=$ black-hole mass.

The mass of an asymptotically flat manifold

If we consider variations that preserve asymptotic flatness, then the divergence term has a role (flux at infinity), and

$$
\frac{d}{d g}(\mathcal{A}(g)+m(g))[h]=\int_{M} h^{i j} E_{i j} d V
$$

The quantity $m(g)$, called $A D M$ mass ([ADM, '60]), is defined as

$$
m(g):=\lim _{r \rightarrow \infty} \oint_{S_{r}}\left(\partial_{k} g_{j k}-\partial_{j} g_{k k}\right) \nu^{j} d \sigma
$$

Example 1: Schwartzschild. $m_{A D M}=$ black-hole mass.
Example 2: Conformal blow-ups. If G_{p} is the Green's function of an elliptic operator on \hat{M} with pole at p, then $G_{p}(x) \simeq d(x, p)^{-1}$.

The mass of an asymptotically flat manifold

If we consider variations that preserve asymptotic flatness, then the divergence term has a role (flux at infinity), and

$$
\frac{d}{d g}(\mathcal{A}(g)+m(g))[h]=\int_{M} h^{i j} E_{i j} d V
$$

The quantity $m(g)$, called $A D M$ mass ([ADM, '60]), is defined as

$$
m(g):=\lim _{r \rightarrow \infty} \oint_{S_{r}}\left(\partial_{k} g_{j k}-\partial_{j} g_{k k}\right) \nu^{j} d \sigma
$$

Example 1: Schwartzschild. $m_{A D M}=$ black-hole mass.
Example 2: Conformal blow-ups. If G_{p} is the Green's function of an elliptic operator on \hat{M} with pole at p, then $G_{p}(x) \simeq d(x, p)^{-1}$. If $f(x)=G_{p}^{4} \simeq d(x, p)^{-4}$, then

$$
m_{A D M}=\lim _{x \rightarrow p}\left(G_{p}(x)-\frac{1}{d(x, p)}\right)=A
$$

The Positive Mass Theorem

The Positive Mass Theorem

Theorem ([Schoen-Yau, '79, '81, '17])

The Positive Mass Theorem

Theorem ([Schoen-Yau, '79, '81, '17])
If $R_{g} \geq 0$ then $m(g) \geq 0$.

The Positive Mass Theorem

Theorem ([Schoen-Yau, '79, '81, '17])
If $R_{g} \geq 0$ then $m(g) \geq 0$. In case $m(g)=0$, then (M, g) is isometric to the flat Euclidean space $\left(\mathbb{R}^{3}, d x^{2}\right)$.

The Positive Mass Theorem

Theorem ([Schoen-Yau, '79, '81, '17])
If $R_{g} \geq 0$ then $m(g) \geq 0$. In case $m(g)=0$, then (M, g) is isometric to the flat Euclidean space $\left(\mathbb{R}^{3}, d x^{2}\right)$.

The (first) proof used the construction of stable asymptotically planar minimal surfaces assuming $m<0$, obtaining then a contradiction from the second variation formula using $R_{g} \geq 0$.

The Positive Mass Theorem

Theorem ([Schoen-Yau, '79, '81, '17])
If $R_{g} \geq 0$ then $m(g) \geq 0$. In case $m(g)=0$, then (M, g) is isometric to the flat Euclidean space $\left(\mathbb{R}^{3}, d x^{2}\right)$.

The (first) proof used the construction of stable asymptotically planar minimal surfaces assuming $m<0$, obtaining then a contradiction from the second variation formula using $R_{g} \geq 0$.

In 1981 Witten ('81) used Dirac's equation in a different proof, obtaining an integral formula for the mass via the Bochner-Lichnerowitz identity.

The Positive Mass Theorem

Theorem ([Schoen-Yau, '79, '81, '17])
If $R_{g} \geq 0$ then $m(g) \geq 0$. In case $m(g)=0$, then (M, g) is isometric to the flat Euclidean space $\left(\mathbb{R}^{3}, d x^{2}\right)$.

The (first) proof used the construction of stable asymptotically planar minimal surfaces assuming $m<0$, obtaining then a contradiction from the second variation formula using $R_{g} \geq 0$.

In 1981 Witten ('81) used Dirac's equation in a different proof, obtaining an integral formula for the mass via the Bochner-Lichnerowitz identity. Both approaches are fundamental to study manifolds with positive scalar curvature ([Gromov-Lawson, '80], [Stolz, '92]).

Around the Positive Mass Theorem

Around the Positive Mass Theorem

- Was used to solve Yamabe's conjecture in low dimensions: Schoen constructed test functions with Yamabe quotient lower than on the sphere.

Around the Positive Mass Theorem

- Was used to solve Yamabe's conjecture in low dimensions: Schoen constructed test functions with Yamabe quotient lower than on the sphere.
- Relation to Yamabe's invariant (vaguely: the largest scalar curvature on a given manifold). Leading to compactness and finite-topology theorems ([Bray-Neves, '04], [Chang-Qing-Yang, '07]).

Around the Positive Mass Theorem

- Was used to solve Yamabe's conjecture in low dimensions: Schoen constructed test functions with Yamabe quotient lower than on the sphere.
- Relation to Yamabe's invariant (vaguely: the largest scalar curvature on a given manifold). Leading to compactness and finite-topology theorems ([Bray-Neves, '04], [Chang-Qing-Yang, '07]).
- CMC foliations at infinity ([Huisken-Yau, '96], [Qing-Tian, '07]) and and isoperimetric sets of large volume ([Eichmair-Metzger, '13]).

Around the Positive Mass Theorem

- Was used to solve Yamabe's conjecture in low dimensions: Schoen constructed test functions with Yamabe quotient lower than on the sphere.
- Relation to Yamabe's invariant (vaguely: the largest scalar curvature on a given manifold). Leading to compactness and finite-topology theorems ([Bray-Neves, '04], [Chang-Qing-Yang, '07]).
- CMC foliations at infinity ([Huisken-Yau, '96], [Qing-Tian, '07]) and and isoperimetric sets of large volume ([Eichmair-Metzger, '13]).
- Relation to stability properties of minimal surfaces ([Carlotto, '14], [Carlotto-Chodosh-Eichmair, '15]).

CR manifolds

CR manifolds

We deal with three-dimensional manifolds with a non-integrable twodimensional distribution (contact structure) ξ.

CR manifolds

We deal with three-dimensional manifolds with a non-integrable twodimensional distribution (contact structure) ξ.

CR manifolds

We deal with three-dimensional manifolds with a non-integrable twodimensional distribution (contact structure) ξ.
We also have a CR structure (complex rotation) $J: \xi \rightarrow \xi$ s.t. $J^{2}=-1$. Given J as above, we have locally a vector field Z_{1} such that

$$
J Z_{1}=i Z_{1} ; \quad J Z_{\overline{1}}=-i Z_{\overline{1}} \quad \text { where } \quad Z_{\overline{1}}=\overline{\left(Z_{1}\right)}
$$

CR manifolds

We deal with three-dimensional manifolds with a non-integrable twodimensional distribution (contact structure) ξ.
We also have a CR structure (complex rotation) $J: \xi \rightarrow \xi$ s.t. $J^{2}=-1$.
Given J as above, we have locally a vector field Z_{1} such that

$$
J Z_{1}=i Z_{1} ; \quad J Z_{\overline{1}}=-i Z_{\overline{1}} \quad \text { where } \quad Z_{\overline{1}}=\overline{\left(Z_{1}\right)}
$$

A contact form θ is a 1 -form annihilating ξ

CR manifolds

We deal with three-dimensional manifolds with a non-integrable twodimensional distribution (contact structure) ξ.

We also have a CR structure (complex rotation) $J: \xi \rightarrow \xi$ s.t. $J^{2}=-1$. Given J as above, we have locally a vector field Z_{1} such that

$$
J Z_{1}=i Z_{1} ; \quad J Z_{\overline{1}}=-i Z_{\overline{1}} \quad \text { where } \quad Z_{\overline{1}}=\overline{\left(Z_{1}\right)}
$$

A contact form θ is a 1-form annihilating ξ : we assume that $\theta \wedge d \theta \neq 0$ everywhere on M (pseudoconvexity).

CR manifolds

We deal with three-dimensional manifolds with a non-integrable twodimensional distribution (contact structure) ξ.

We also have a CR structure (complex rotation) $J: \xi \rightarrow \xi$ s.t. $J^{2}=-1$. Given J as above, we have locally a vector field Z_{1} such that

$$
J Z_{1}=i Z_{1} ; \quad J Z_{\overline{1}}=-i Z_{\overline{1}} \quad \text { where } \quad Z_{\overline{1}}=\overline{\left(Z_{1}\right)}
$$

A contact form θ is a 1-form annihilating ξ : we assume that $\theta \wedge d \theta \neq 0$ everywhere on M (pseudoconvexity).
This condition is quite important for the study of biholomorphic mappings and the $\bar{\partial}$-Neumann problem ([Beals-Fefferman-Grossman, '83]).

Examples

Examples

The Heisenberg group (flat model) $\mathbb{H}^{1}=\{(z, t) \in \mathbb{C} \times \mathbb{R}\}$.

Examples

The Heisenberg group (flat model) $\mathbb{H}^{1}=\{(z, t) \in \mathbb{C} \times \mathbb{R}\}$. Setting

$$
\stackrel{\circ}{Z}_{1}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial z}+i \bar{z} \frac{\partial}{\partial t}\right) ; \quad \stackrel{\circ}{Z}_{\overline{1}}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial \bar{z}}-i z \frac{\partial}{\partial t}\right),
$$

ξ_{0} is spanned by real and imaginary parts of $\stackrel{\circ}{Z}_{1}$.

Examples

The Heisenberg group (flat model) $\mathbb{H}^{1}=\{(z, t) \in \mathbb{C} \times \mathbb{R}\}$. Setting

$$
\stackrel{\circ}{Z}_{1}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial z}+i \bar{z} \frac{\partial}{\partial t}\right) ; \quad \stackrel{\circ}{Z}_{\overline{1}}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial \bar{z}}-i z \frac{\partial}{\partial t}\right),
$$

ξ_{0} is spanned by real and imaginary parts of $\stackrel{\circ}{Z}_{1}$. The standard CR structure $J_{0}: \xi_{0} \rightarrow \xi_{0}$ verifies $J_{0} \stackrel{\circ}{Z}_{1}=i \stackrel{\circ}{Z}_{1}$.

Examples

The Heisenberg group (flat model) $\mathbb{H}^{1}=\{(z, t) \in \mathbb{C} \times \mathbb{R}\}$. Setting

$$
\stackrel{\circ}{Z}_{1}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial z}+i \bar{z} \frac{\partial}{\partial t}\right) ; \quad \stackrel{\circ}{Z}_{\overline{1}}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial \bar{z}}-i z \frac{\partial}{\partial t}\right),
$$

ξ_{0} is spanned by real and imaginary parts of $\stackrel{\circ}{Z}_{1}$. The standard CR structure $J_{0}: \xi_{0} \rightarrow \xi_{0}$ verifies $J_{0} \stackrel{\circ}{Z}_{1}=i \stackrel{\circ}{Z}_{1} . \quad \stackrel{\circ}{\theta}=d t+i z d \bar{z}-i \bar{z} d z$.

Examples

The Heisenberg group (flat model) $\mathbb{H}^{1}=\{(z, t) \in \mathbb{C} \times \mathbb{R}\}$. Setting

$$
\stackrel{\circ}{Z}_{1}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial z}+i \bar{z} \frac{\partial}{\partial t}\right) ; \quad \stackrel{\circ}{Z}_{\overline{1}}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial \bar{z}}-i z \frac{\partial}{\partial t}\right)
$$

ξ_{0} is spanned by real and imaginary parts of $\stackrel{\circ}{Z}_{1}$. The standard CR structure $J_{0}: \xi_{0} \rightarrow \xi_{0}$ verifies $J_{0} \stackrel{\circ}{Z}_{1}=i \stackrel{\circ}{Z}_{1} . \quad \stackrel{\circ}{\theta}=d t+i z d \bar{z}-i \bar{z} d z$.

Boundaries of complex domains.

Examples

The Heisenberg group (flat model) $\mathbb{H}^{1}=\{(z, t) \in \mathbb{C} \times \mathbb{R}\}$. Setting

$$
\stackrel{\circ}{Z}_{1}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial z}+i \bar{z} \frac{\partial}{\partial t}\right) ; \quad \stackrel{\circ}{Z}_{\overline{1}}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial \bar{z}}-i z \frac{\partial}{\partial t}\right),
$$

ξ_{0} is spanned by real and imaginary parts of $\stackrel{\circ}{Z}_{1}$. The standard CR structure $J_{0}: \xi_{0} \rightarrow \xi_{0}$ verifies $J_{0} \stackrel{\circ}{Z}_{1}=i \stackrel{\circ}{Z}_{1} . \quad \stackrel{\circ}{\theta}=d t+i z d \bar{z}-i \bar{z} d z$.

Boundaries of complex domains. Consider $\Omega \subset \mathbb{C}^{2}$ and J_{2} the standard complex rotation in \mathbb{C}^{2}.

Examples

The Heisenberg group (flat model) $\mathbb{H}^{1}=\{(z, t) \in \mathbb{C} \times \mathbb{R}\}$. Setting

$$
\stackrel{\circ}{Z}_{1}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial z}+i \bar{z} \frac{\partial}{\partial t}\right) ; \quad \stackrel{\circ}{Z}_{\overline{1}}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial \bar{z}}-i z \frac{\partial}{\partial t}\right),
$$

ξ_{0} is spanned by real and imaginary parts of $\stackrel{\circ}{Z}_{1}$. The standard CR structure $J_{0}: \xi_{0} \rightarrow \xi_{0}$ verifies $J_{0} \stackrel{\circ}{Z}_{1}=i \stackrel{\circ}{Z}_{1} . \quad \stackrel{\circ}{\theta}=d t+i z d \bar{z}-i \bar{z} d z$.

Boundaries of complex domains. Consider $\Omega \subset \mathbb{C}^{2}$ and J_{2} the standard complex rotation in \mathbb{C}^{2}. Given $p \in \partial \Omega$ one can consider the subset ξ_{p} of $T_{p} \partial \Omega$ which is invariant by J_{2}.

Examples

The Heisenberg group (flat model) $\mathbb{H}^{1}=\{(z, t) \in \mathbb{C} \times \mathbb{R}\}$. Setting

$$
\stackrel{\circ}{Z}_{1}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial z}+i \bar{z} \frac{\partial}{\partial t}\right) ; \quad \stackrel{\circ}{Z}_{\overline{1}}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial \bar{z}}-i z \frac{\partial}{\partial t}\right),
$$

ξ_{0} is spanned by real and imaginary parts of $\stackrel{\circ}{Z}_{1}$. The standard CR structure $J_{0}: \xi_{0} \rightarrow \xi_{0}$ verifies $J_{0} \stackrel{\circ}{Z}_{1}=i \stackrel{\circ}{Z}_{1} . \quad \stackrel{\circ}{\theta}=d t+i z d \bar{z}-i \bar{z} d z$.

Boundaries of complex domains. Consider $\Omega \subset \mathbb{C}^{2}$ and J_{2} the standard complex rotation in \mathbb{C}^{2}. Given $p \in \partial \Omega$ one can consider the subset ξ_{p} of $T_{p} \partial \Omega$ which is invariant by J_{2}. We take ξ_{p} as contact distribution, and $\left.J\right|_{\xi_{p}}$ as the CR structure J.

The Webster curvature of a CR three-manifold

The Webster curvature of a CR three-manifold

In 1983 Webster introduced differential-geometric tools to study the biholomorphy problem.

The Webster curvature of a CR three-manifold

In 1983 Webster introduced differential-geometric tools to study the biholomorphy problem. He defined in particular a scalar function W, the Webster curvature, which behaves conformally like the scalar curvature.

The Webster curvature of a CR three-manifold

In 1983 Webster introduced differential-geometric tools to study the biholomorphy problem. He defined in particular a scalar function W, the Webster curvature, which behaves conformally like the scalar curvature.

Changing conformally the contact form, if $\hat{\theta}=u^{2} \theta$, then $W_{\hat{\theta}}$ is given by

$$
-4 \Delta_{b} u+W_{\theta} u=W_{\hat{\theta}} u^{3} .
$$

The Webster curvature of a CR three-manifold

In 1983 Webster introduced differential-geometric tools to study the biholomorphy problem. He defined in particular a scalar function W, the Webster curvature, which behaves conformally like the scalar curvature.

Changing conformally the contact form, if $\hat{\theta}=u^{2} \theta$, then $W_{\hat{\theta}}$ is given by

$$
-4 \Delta_{b} u+W_{\theta} u=W_{\hat{\theta}} u^{3}
$$

Here Δ_{b} is the sub-laplacian on M : the laplacian in the contact directions.

The Webster curvature of a CR three-manifold

In 1983 Webster introduced differential-geometric tools to study the biholomorphy problem. He defined in particular a scalar function W, the Webster curvature, which behaves conformally like the scalar curvature.

Changing conformally the contact form, if $\hat{\theta}=u^{2} \theta$, then $W_{\hat{\theta}}$ is given by

$$
-4 \Delta_{b} u+W_{\theta} u=W_{\hat{\theta}} u^{3}
$$

Here Δ_{b} is the sub-laplacian on M : the laplacian in the contact directions. Since the contact distribution is non-integrable, one can use Hörmander's theory (commutators) to recover regularity.

The Webster curvature of a CR three-manifold

In 1983 Webster introduced differential-geometric tools to study the biholomorphy problem. He defined in particular a scalar function W, the Webster curvature, which behaves conformally like the scalar curvature.

Changing conformally the contact form, if $\hat{\theta}=u^{2} \theta$, then $W_{\hat{\theta}}$ is given by

$$
-4 \Delta_{b} u+W_{\theta} u=W_{\hat{\theta}} u^{3}
$$

Here Δ_{b} is the sub-laplacian on M : the laplacian in the contact directions. Since the contact distribution is non-integrable, one can use Hörmander's theory (commutators) to recover regularity. However the non-contact direction counts twice (in Sobolev embeddings, etc.).

The Webster curvature of a CR three-manifold

In 1983 Webster introduced differential-geometric tools to study the biholomorphy problem. He defined in particular a scalar function W, the Webster curvature, which behaves conformally like the scalar curvature.

Changing conformally the contact form, if $\hat{\theta}=u^{2} \theta$, then $W_{\hat{\theta}}$ is given by

$$
-4 \Delta_{b} u+W_{\theta} u=W_{\hat{\theta}} u^{3}
$$

Here Δ_{b} is the sub-laplacian on M : the laplacian in the contact directions. Since the contact distribution is non-integrable, one can use Hörmander's theory (commutators) to recover regularity. However the non-contact direction counts twice (in Sobolev embeddings, etc.).

As before, we can define a Sobolev-Webster quotient and try to uniformize W as we did for the scalar curvature.

The Webster curvature of a CR three-manifold

In 1983 Webster introduced differential-geometric tools to study the biholomorphy problem. He defined in particular a scalar function W, the Webster curvature, which behaves conformally like the scalar curvature.

Changing conformally the contact form, if $\hat{\theta}=u^{2} \theta$, then $W_{\hat{\theta}}$ is given by

$$
-4 \Delta_{b} u+W_{\theta} u=W_{\hat{\theta}} u^{3}
$$

Here Δ_{b} is the sub-laplacian on M : the laplacian in the contact directions. Since the contact distribution is non-integrable, one can use Hörmander's theory (commutators) to recover regularity. However the non-contact direction counts twice (in Sobolev embeddings, etc.).

As before, we can define a Sobolev-Webster quotient and try to uniformize W as we did for the scalar curvature. For $n \geq 5$ Jerison and Lee (1989) proved the counterparts of Trudinger and Aubin's results.

Green's function and mass in three dimensions (CR)

Green's function and mass in three dimensions (CR)

From now on, suppose the infimum of the Sobolev-Webster quotient is positive (otherwise minimizers trivially exist).

Green's function and mass in three dimensions (CR)

From now on, suppose the infimum of the Sobolev-Webster quotient is positive (otherwise minimizers trivially exist).

In 3D the Green's function still appears.

Green's function and mass in three dimensions (CR)

From now on, suppose the infimum of the Sobolev-Webster quotient is positive (otherwise minimizers trivially exist).

In 3D the Green's function still appears. In suitable coordinates at $p \in M$

$$
G_{p} \simeq \frac{1}{\rho^{2}}+A
$$

where $\rho^{4}(z, t)=|z|^{4}+t^{2},(z, t) \in \mathbb{H}^{1}$ is the homogeneous distance.

Green's function and mass in three dimensions (CR)

From now on, suppose the infimum of the Sobolev-Webster quotient is positive (otherwise minimizers trivially exist).

In 3D the Green's function still appears. In suitable coordinates at $p \in M$

$$
G_{p} \simeq \frac{1}{\rho^{2}}+A
$$

where $\rho^{4}(z, t)=|z|^{4}+t^{2},(z, t) \in \mathbb{H}^{1}$ is the homogeneous distance. Blowing-up the contact form θ using G_{p}, we obtain an asymptotically (Heisenberg) flat manifold and define its mass, proportional to A.

Green's function and mass in three dimensions (CR)

From now on, suppose the infimum of the Sobolev-Webster quotient is positive (otherwise minimizers trivially exist).

In 3D the Green's function still appears. In suitable coordinates at $p \in M$

$$
G_{p} \simeq \frac{1}{\rho^{2}}+A
$$

where $\rho^{4}(z, t)=|z|^{4}+t^{2},(z, t) \in \mathbb{H}^{1}$ is the homogeneous distance. Blowing-up the contact form θ using G_{p}, we obtain an asymptotically (Heisenberg) flat manifold and define its mass, proportional to A.

However, things start to get different in the CR case.

Green's function and mass in three dimensions (CR)

From now on, suppose the infimum of the Sobolev-Webster quotient is positive (otherwise minimizers trivially exist).

In 3D the Green's function still appears. In suitable coordinates at $p \in M$

$$
G_{p} \simeq \frac{1}{\rho^{2}}+A
$$

where $\rho^{4}(z, t)=|z|^{4}+t^{2},(z, t) \in \mathbb{H}^{1}$ is the homogeneous distance. Blowing-up the contact form θ using G_{p}, we obtain an asymptotically (Heisenberg) flat manifold and define its mass, proportional to A.

However, things start to get different in the CR case. One crucial difference between dimension three and higher is the embeddability of abstract CR manifolds (reference book: [Chen-Shaw, '01]).

The Paneitz operator

The Paneitz operator

The CR Paneitz operator P is a fourth-order operator defined by

$$
P \varphi:=4\left(\varphi_{, \overline{1} 11}+i A_{11} \varphi, \overline{1}\right) \overline{1}+\text { conj. }
$$

The Paneitz operator

The CR Paneitz operator P is a fourth-order operator defined by

$$
P \varphi:=4\left(\varphi_{, \overline{1} 11}+i A_{11} \varphi, \overline{1}\right)_{\overline{1}}+\operatorname{conj} .
$$

It characterizes the structure of $C R$ functions ([Lee, '88], [Case-ChanilloYang, '14], [Hirachi, '93]).

The Paneitz operator

The CR Paneitz operator P is a fourth-order operator defined by

$$
P \varphi:=4\left(\varphi_{, \overline{1} 11}+i A_{11} \varphi, \overline{1}\right)_{\overline{1}}+\operatorname{conj} .
$$

It characterizes the structure of $C R$ functions ([Lee, '88], [Case-ChanilloYang, '14], [Hirachi, '93]). Moreover

$$
P_{\hat{\theta}}=e^{-4 f} P_{\theta} \quad \text { if } \hat{\theta}=e^{2 f} \theta
$$

The Paneitz operator

The CR Paneitz operator P is a fourth-order operator defined by

$$
P \varphi:=4\left(\varphi_{, \overline{1} 11}+i A_{11} \varphi_{, \overline{1}}\right)_{\overline{1}}+\operatorname{conj} .
$$

It characterizes the structure of $C R$ functions ([Lee, '88], [Case-ChanilloYang, '14], [Hirachi, '93]). Moreover

$$
P_{\hat{\theta}}=e^{-4 f} P_{\theta} \quad \text { if } \hat{\theta}=e^{2 f} \theta
$$

The Paneitz operator enters in the assumptions of the following embeddability theorem.

Theorem ([Chanillo-Chiu-Yang, '12])

The Paneitz operator

The CR Paneitz operator P is a fourth-order operator defined by

$$
P \varphi:=4\left(\varphi_{, \overline{1} 11}+i A_{11} \varphi_{, \overline{1}}\right)_{\overline{1}}+\text { conj. }
$$

It characterizes the structure of $C R$ functions ([Lee, '88], [Case-ChanilloYang, '14], [Hirachi, '93]). Moreover

$$
P_{\hat{\theta}}=e^{-4 f} P_{\theta} \quad \text { if } \hat{\theta}=e^{2 f} \theta
$$

The Paneitz operator enters in the assumptions of the following embeddability theorem.

Theorem ([Chanillo-Chiu-Yang, '12]) Let M^{3} be a compact CR manifold.

The Paneitz operator

The CR Paneitz operator P is a fourth-order operator defined by

$$
P \varphi:=4\left(\varphi_{, \overline{1} 11}+i A_{11} \varphi_{, \overline{1}}\right)_{\overline{1}}+\text { conj. }
$$

It characterizes the structure of $C R$ functions ([Lee, '88], [Case-ChanilloYang, '14], [Hirachi, '93]). Moreover

$$
P_{\hat{\theta}}=e^{-4 f} P_{\theta} \quad \text { if } \hat{\theta}=e^{2 f} \theta
$$

The Paneitz operator enters in the assumptions of the following embeddability theorem.

Theorem ([Chanillo-Chiu-Yang, '12]) Let M^{3} be a compact CR manifold. If $P \geq 0$ and $W>0$, then M embeds into some \mathbb{C}^{N}.

An integral formula for the mass

An integral formula for the mass

Proposition Let (N, J, θ) be asymptotically-Heisenberg, and suppose a complex function β on N behaves like \bar{z} at infinity.

An integral formula for the mass

Proposition Let (N, J, θ) be asymptotically-Heisenberg, and suppose a complex function β on N behaves like \bar{z} at infinity. Then one has

$$
\begin{aligned}
\frac{2}{3} m(J, \theta) & =-4 \int_{N}\left|Z_{1} Z_{\overline{1}} \beta\right|^{2} d V_{\theta}+2 \int_{N}\left|Z_{\overline{1}} Z_{\overline{1}} \beta\right|^{2} d V_{\theta} \\
& +2 \int_{N} W\left|Z_{\overline{1}} \beta\right|^{2} d V_{\theta}+\frac{1}{2} \int_{N} \bar{\beta} P_{\theta} \beta d V_{\theta}
\end{aligned}
$$

An integral formula for the mass

Proposition Let (N, J, θ) be asymptotically-Heisenberg, and suppose a complex function β on N behaves like \bar{z} at infinity. Then one has

$$
\begin{aligned}
\frac{2}{3} m(J, \theta) & =-4 \int_{N}\left|Z_{1} Z_{\overline{1}} \beta\right|^{2} d V_{\theta}+2 \int_{N}\left|Z_{\overline{1}} Z_{\overline{1}} \beta\right|^{2} d V_{\theta} \\
& +2 \int_{N} W\left|Z_{\overline{1}} \beta\right|^{2} d V_{\theta}+\frac{1}{2} \int_{N} \bar{\beta} P_{\theta} \beta d V_{\theta}
\end{aligned}
$$

The proof uses (a tricky) integration by parts, and the main idea is to bring in the higher order term involving the Paneitz operator P_{θ}.

An integral formula for the mass

Proposition Let (N, J, θ) be asymptotically-Heisenberg, and suppose a complex function β on N behaves like \bar{z} at infinity. Then one has

$$
\begin{aligned}
\frac{2}{3} m(J, \theta) & =-4 \int_{N}\left|Z_{1} Z_{\overline{1}} \beta\right|^{2} d V_{\theta}+2 \int_{N}\left|Z_{\overline{1}} Z_{\overline{1}} \beta\right|^{2} d V_{\theta} \\
& +2 \int_{N} W\left|Z_{\overline{1}} \beta\right|^{2} d V_{\theta}+\frac{1}{2} \int_{N} \bar{\beta} P_{\theta} \beta d V_{\theta}
\end{aligned}
$$

The proof uses (a tricky) integration by parts, and the main idea is to bring in the higher order term involving the Paneitz operator P_{θ}.

The only obstruction to the positivity is the first term

An integral formula for the mass

Proposition Let (N, J, θ) be asymptotically-Heisenberg, and suppose a complex function β on N behaves like \bar{z} at infinity. Then one has

$$
\begin{aligned}
\frac{2}{3} m(J, \theta) & =-4 \int_{N}\left|Z_{1} Z_{\overline{1}} \beta\right|^{2} d V_{\theta}+2 \int_{N}\left|Z_{\overline{1}} Z_{\overline{1}} \beta\right|^{2} d V_{\theta} \\
& +2 \int_{N} W\left|Z_{\overline{1}} \beta\right|^{2} d V_{\theta}+\frac{1}{2} \int_{N} \bar{\beta} P_{\theta} \beta d V_{\theta}
\end{aligned}
$$

The proof uses (a tricky) integration by parts, and the main idea is to bring in the higher order term involving the Paneitz operator P_{θ}.

The only obstruction to the positivity is the first term: however by a recent theorem in [Hsiao-Yung, '15] one can kill $Z_{1} Z_{\overline{1}} \beta$ starting from an approximate solution decaying sufficiently fast at ∞.

A positive mass theorem

A positive mass theorem

Theorem ([Cheng-M.-Yang, '17])

A positive mass theorem

Theorem ([Cheng-M.-Yang, '17])
Let (M^{3}, J, θ) be a compact CR manifold.

A positive mass theorem

Theorem ([Cheng-M.-Yang, '17])
Let (M^{3}, J, θ) be a compact CR manifold. Suppose the Webster class is positive, and that the CR Paneitz operator is non-negative.

A positive mass theorem

Theorem ([Cheng-M.-Yang, '17])
Let $\left(M^{3}, J, \theta\right)$ be a compact CR manifold. Suppose the Webster class is positive, and that the CR Paneitz operator is non-negative. Let $p \in M$ and let $\tilde{\theta}$ be a blown-up of contact form at p.

A positive mass theorem

Theorem ([Cheng-M.-Yang, '17])

Let $\left(M^{3}, J, \theta\right)$ be a compact CR manifold. Suppose the Webster class is positive, and that the CR Paneitz operator is non-negative. Let $p \in M$ and let $\tilde{\theta}$ be a blown-up of contact form at p. Then
(a) the CR mass of $(M, J, \tilde{\theta})$ is non negative;

A positive mass theorem

Theorem ([Cheng-M.-Yang, '17])

Let $\left(M^{3}, J, \theta\right)$ be a compact CR manifold. Suppose the Webster class is positive, and that the CR Paneitz operator is non-negative. Let $p \in M$ and let $\tilde{\theta}$ be a blown-up of contact form at p. Then
(a) the CR mass of $(M, J, \tilde{\theta})$ is non negative;
(b) if the mass is zero, M is CR-equivalent to the standard $S^{3}\left(\simeq \mathbb{H}^{1}\right)$.

A positive mass theorem

Theorem ([Cheng-M.-Yang, '17])

Let $\left(M^{3}, J, \theta\right)$ be a compact CR manifold. Suppose the Webster class is positive, and that the CR Paneitz operator is non-negative. Let $p \in M$ and let $\tilde{\theta}$ be a blown-up of contact form at p. Then
(a) the CR mass of $(M, J, \tilde{\theta})$ is non negative;
(b) if the mass is zero, M is CR-equivalent to the standard $S^{3}\left(\simeq \mathbb{H}^{1}\right)$.

- Again, the CR mass is proportional to A, the constant term appearing in the expansion of the Green's function.

A positive mass theorem

Theorem ([Cheng-M.-Yang, '17])

Let $\left(M^{3}, J, \theta\right)$ be a compact CR manifold. Suppose the Webster class is positive, and that the CR Paneitz operator is non-negative. Let $p \in M$ and let $\tilde{\theta}$ be a blown-up of contact form at p. Then
(a) the CR mass of $(M, J, \tilde{\theta})$ is non negative;
(b) if the mass is zero, M is CR-equivalent to the standard $S^{3}\left(\simeq \mathbb{H}^{1}\right)$.

- Again, the CR mass is proportional to A, the constant term appearing in the expansion of the Green's function.
- $m>0$ implies that the Sobolev quotient of (M, J) is lower than that of S^{3}, so minimizers exist.

A positive mass theorem

Theorem ([Cheng-M.-Yang, '17])

Let $\left(M^{3}, J, \theta\right)$ be a compact CR manifold. Suppose the Webster class is positive, and that the CR Paneitz operator is non-negative. Let $p \in M$ and let $\tilde{\theta}$ be a blown-up of contact form at p. Then
(a) the CR mass of $(M, J, \tilde{\theta})$ is non negative;
(b) if the mass is zero, M is CR-equivalent to the standard $S^{3}\left(\simeq \mathbb{H}^{1}\right)$.

- Again, the CR mass is proportional to A, the constant term appearing in the expansion of the Green's function.
- $m>0$ implies that the Sobolev quotient of (M, J) is lower than that of S^{3}, so minimizers exist. Non-minimal solutions were found in [Gamara (et al.), '01], flow approach in [Chang-Cheng, '02], [Ho, '12].

A positive mass theorem

Theorem ([Cheng-M.-Yang, '17])

Let $\left(M^{3}, J, \theta\right)$ be a compact CR manifold. Suppose the Webster class is positive, and that the CR Paneitz operator is non-negative. Let $p \in M$ and let $\tilde{\theta}$ be a blown-up of contact form at p. Then
(a) the CR mass of $(M, J, \tilde{\theta})$ is non negative;
(b) if the mass is zero, M is CR-equivalent to the standard $S^{3}\left(\simeq \mathbb{H}^{1}\right)$.

- Again, the CR mass is proportional to A, the constant term appearing in the expansion of the Green's function.
- $m>0$ implies that the Sobolev quotient of (M, J) is lower than that of S^{3}, so minimizers exist. Non-minimal solutions were found in [Gamara (et al.), '01], flow approach in [Chang-Cheng, '02], [Ho, '12].
- Positivity is proved in higher dimensions in [Cheng-Chiu-Yang, '14] for locally spherical manifolds, and in [Cheng-Chiu, w.i.p.] for $n=5$.

On the positivity condition for the Paneitz operator

On the positivity condition for the Paneitz operator

Consider the standard sphere S^{3} in \mathbb{C}^{2}.

On the positivity condition for the Paneitz operator

Consider the standard sphere S^{3} in \mathbb{C}^{2}. It turns out that most perturbations of its CR structure are non embeddable ([Burns-Epstein, '90]).

On the positivity condition for the Paneitz operator

Consider the standard sphere S^{3} in \mathbb{C}^{2}. It turns out that most perturbations of its CR structure are non embeddable ([Burns-Epstein, '90]). In these cases the Paneitz operator cannot be positive-definite.

On the positivity condition for the Paneitz operator

Consider the standard sphere S^{3} in \mathbb{C}^{2}. It turns out that most perturbations of its CR structure are non embeddable ([Burns-Epstein, '90]). In these cases the Paneitz operator cannot be positive-definite.

Theorem ([Cheng-M.-Yang, '17])

On the positivity condition for the Paneitz operator

Consider the standard sphere S^{3} in \mathbb{C}^{2}. It turns out that most perturbations of its CR structure are non embeddable ([Burns-Epstein, '90]). In these cases the Paneitz operator cannot be positive-definite.

Theorem ([Cheng-M.-Yang, '17])

There exist CR structures on S^{3} (arbitrarily close to the standard one) with positive Webster curvature and negative CR mass.

On the positivity condition for the Paneitz operator

Consider the standard sphere S^{3} in \mathbb{C}^{2}. It turns out that most perturbations of its CR structure are non embeddable ([Burns-Epstein, '90]). In these cases the Paneitz operator cannot be positive-definite.

Theorem ([Cheng-M.-Yang, '17])

There exist CR structures on S^{3} (arbitrarily close to the standard one) with positive Webster curvature and negative CR mass.

An interesting case are Rossi spheres S_{s}^{3} ([H.Rossi, '65])

On the positivity condition for the Paneitz operator

Consider the standard sphere S^{3} in \mathbb{C}^{2}. It turns out that most perturbations of its CR structure are non embeddable ([Burns-Epstein, '90]). In these cases the Paneitz operator cannot be positive-definite.

Theorem ([Cheng-M.-Yang, '17])

There exist CR structures on S^{3} (arbitrarily close to the standard one) with positive Webster curvature and negative CR mass.

An interesting case are Rossi spheres S_{s}^{3} ([H.Rossi, '65]): these have the same contact structure as the standard S^{3} but a distorted complex rotation J, and are homogeneous.

On the positivity condition for the Paneitz operator

Consider the standard sphere S^{3} in \mathbb{C}^{2}. It turns out that most perturbations of its CR structure are non embeddable ([Burns-Epstein, '90]). In these cases the Paneitz operator cannot be positive-definite.

Theorem ([Cheng-M.-Yang, '17])

There exist CR structures on S^{3} (arbitrarily close to the standard one) with positive Webster curvature and negative CR mass.

An interesting case are Rossi spheres S_{s}^{3} ([H.Rossi, '65]): these have the same contact structure as the standard S^{3} but a distorted complex rotation J, and are homogeneous. They can be smoothly deformed to the standard S^{3} via some parameter $s \in(-\varepsilon, \varepsilon)$.

CR Sobolev quotient of Rossi spheres

CR Sobolev quotient of Rossi spheres

Theorem ([Cheng-M.-Yang, w.i.p.])

CR Sobolev quotient of Rossi spheres

Theorem ([Cheng-M.-Yang, w.i.p.])
For small $s \neq 0$ the infimum of the Sobolev-Webster quotient of Rossi spheres is not attained (and is equal to that of the standard S^{3}).

CR Sobolev quotient of Rossi spheres

Theorem ([Cheng-M.-Yang, w.i.p.])
For small $s \neq 0$ the infimum of the Sobolev-Webster quotient of Rossi spheres is not attained (and is equal to that of the standard S^{3}).

Sketch of the proof.

- If a function has low Sobolev-Webster quotient on a Rossi sphere S_{s}^{3} it has low Sobolev-Webster quotient also on the standard $S^{3}=S_{0}^{3}$.

CR Sobolev quotient of Rossi spheres

Theorem ([Cheng-M.-Yang, w.i.p.])
For small $s \neq 0$ the infimum of the Sobolev-Webster quotient of Rossi spheres is not attained (and is equal to that of the standard S^{3}).

Sketch of the proof.

- If a function has low Sobolev-Webster quotient on a Rossi sphere S_{s}^{3} it has low Sobolev-Webster quotient also on the standard $S^{3}=S_{0}^{3}$.
- Minima for the Webster quotient on the standard S^{3} were classifed in [Jerison-Lee, '88] as (CR counterparts of) Aubin-Talenti functions.

CR Sobolev quotient of Rossi spheres

Theorem ([Cheng-M.-Yang, w.i.p.])
For small $s \neq 0$ the infimum of the Sobolev-Webster quotient of Rossi spheres is not attained (and is equal to that of the standard S^{3}).

Sketch of the proof.

- If a function has low Sobolev-Webster quotient on a Rossi sphere S_{s}^{3} it has low Sobolev-Webster quotient also on the standard $S^{3}=S_{0}^{3}$.
- Minima for the Webster quotient on the standard S^{3} were classifed in [Jerison-Lee, '88] as (CR counterparts of) Aubin-Talenti functions.
- For $|s| \neq 0$ small, the Webster quotient of the functions $U_{\lambda}^{C R}$ has a profile of this kind, for λ in a fixed compact set of $(0, \infty)$

CR Sobolev quotient of Rossi spheres

CR Sobolev quotient of Rossi spheres

It remains to understand the case in which minimizers were close in the Sobolev sense to functions $U_{\lambda}^{C R}$ with λ large (λ small is analogous).

CR Sobolev quotient of Rossi spheres

It remains to understand the case in which minimizers were close in the Sobolev sense to functions $U_{\lambda}^{C R}$ with λ large (λ small is analogous).

Blow-up analysis shows that a sequence of minimizers would resemble the Green's function G_{p}^{s} of the sub-Laplacian on the Rossi sphere.

CR Sobolev quotient of Rossi spheres

It remains to understand the case in which minimizers were close in the Sobolev sense to functions $U_{\lambda}^{C R}$ with λ large (λ small is analogous).

Blow-up analysis shows that a sequence of minimizers would resemble the Green's function G_{p}^{s} of the sub-Laplacian on the Rossi sphere.

Proposition

CR Sobolev quotient of Rossi spheres

It remains to understand the case in which minimizers were close in the Sobolev sense to functions $U_{\lambda}^{C R}$ with λ large (λ small is analogous).

Blow-up analysis shows that a sequence of minimizers would resemble the Green's function G_{p}^{s} of the sub-Laplacian on the Rossi sphere.

Proposition

For small $s \neq 0$, the CR mass of S_{s}^{3} is negative $\left(m_{s} \simeq-\frac{3}{2} \pi s^{2}\right)$.

CR Sobolev quotient of Rossi spheres

It remains to understand the case in which minimizers were close in the Sobolev sense to functions $U_{\lambda}^{C R}$ with λ large (λ small is analogous).

Blow-up analysis shows that a sequence of minimizers would resemble the Green's function G_{p}^{s} of the sub-Laplacian on the Rossi sphere.

Proposition

For small $s \neq 0$, the CR mass of S_{s}^{3} is negative $\left(m_{s} \simeq-\frac{3}{2} \pi s^{2}\right)$.
Recalling that the mass gives the constant term in the expansion of G_{p}^{s}, a contradiction is reached by a Kazdan-Warner identity.

CR Sobolev quotient of Rossi spheres

It remains to understand the case in which minimizers were close in the Sobolev sense to functions $U_{\lambda}^{C R}$ with λ large (λ small is analogous).

Blow-up analysis shows that a sequence of minimizers would resemble the Green's function G_{p}^{s} of the sub-Laplacian on the Rossi sphere.

Proposition

For small $s \neq 0$, the CR mass of S_{s}^{3} is negative $\left(m_{s} \simeq-\frac{3}{2} \pi s^{2}\right)$.
Recalling that the mass gives the constant term in the expansion of G_{p}^{s}, a contradiction is reached by a Kazdan-Warner identity.

Remark. The CR Sobolev quotient of S_{s}^{3}, a closed manifold, behaves like that of a domain in \mathbb{R}^{n} !

Some open problems

Some open problems

It would be interesting to see whether minimal surfaces in CR manifolds ([Cheng-Hwang-M.-Yang, '05]) might have a role in studying the mass.

Some open problems

It would be interesting to see whether minimal surfaces in CR manifolds ([Cheng-Hwang-M.-Yang, '05]) might have a role in studying the mass.

Another problem recently settled is the compactness of solutions to Yamabe's equation ([Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]).

Some open problems

It would be interesting to see whether minimal surfaces in CR manifolds ([Cheng-Hwang-M.-Yang, '05]) might have a role in studying the mass.

Another problem recently settled is the compactness of solutions to Yamabe's equation ([Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$.

Some open problems

It would be interesting to see whether minimal surfaces in CR manifolds ([Cheng-Hwang-M.-Yang, '05]) might have a role in studying the mass.

Another problem recently settled is the compactness of solutions to Yamabe's equation ([Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$. The compactness issue for the Webster-Yamabe problem is entirely open.

Some open problems

It would be interesting to see whether minimal surfaces in CR manifolds ([Cheng-Hwang-M.-Yang, '05]) might have a role in studying the mass.

Another problem recently settled is the compactness of solutions to Yamabe's equation ([Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$. The compactness issue for the Webster-Yamabe problem is entirely open.

One reason is that the profile of blow-ups has not been classified.

Some open problems

It would be interesting to see whether minimal surfaces in CR manifolds ([Cheng-Hwang-M.-Yang, '05]) might have a role in studying the mass.

Another problem recently settled is the compactness of solutions to Yamabe's equation ([Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$. The compactness issue for the Webster-Yamabe problem is entirely open.

One reason is that the profile of blow-ups has not been classified. This concerns entire positive solutions to

$$
-\Delta_{b} u=u^{\frac{Q+2}{Q-2}} \quad \text { in } \mathbb{H}^{n} ; \quad Q=2 n+2
$$

Some open problems

It would be interesting to see whether minimal surfaces in CR manifolds ([Cheng-Hwang-M.-Yang, '05]) might have a role in studying the mass.

Another problem recently settled is the compactness of solutions to Yamabe's equation ([Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$. The compactness issue for the Webster-Yamabe problem is entirely open.

One reason is that the profile of blow-ups has not been classified. This concerns entire positive solutions to

$$
-\Delta_{b} u=u^{\frac{Q+2}{Q-2}} \quad \text { in } \mathbb{H}^{n} ; \quad Q=2 n+2
$$

Assuming finite volume, it is done in [Jerison-Lee, '88].

Some open problems

It would be interesting to see whether minimal surfaces in CR manifolds ([Cheng-Hwang-M.-Yang, '05]) might have a role in studying the mass.

Another problem recently settled is the compactness of solutions to Yamabe's equation ([Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$. The compactness issue for the Webster-Yamabe problem is entirely open.

One reason is that the profile of blow-ups has not been classified. This concerns entire positive solutions to

$$
-\Delta_{b} u=u^{\frac{Q+2}{Q-2}} \quad \text { in } \mathbb{H}^{n} ; \quad Q=2 n+2
$$

Assuming finite volume, it is done in [Jerison-Lee, '88]. However blow-up profiles may not satisfy this assumption, and Moving planes do not work.

Some open problems

It would be interesting to see whether minimal surfaces in CR manifolds ([Cheng-Hwang-M.-Yang, '05]) might have a role in studying the mass.

Another problem recently settled is the compactness of solutions to Yamabe's equation ([Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$. The compactness issue for the Webster-Yamabe problem is entirely open.

One reason is that the profile of blow-ups has not been classified. This concerns entire positive solutions to

$$
-\Delta_{b} u=u^{\frac{Q+2}{Q-2}} \quad \text { in } \mathbb{H}^{n} ; \quad Q=2 n+2
$$

Assuming finite volume, it is done in [Jerison-Lee, '88]. However blow-up profiles may not satisfy this assumption, and Moving planes do not work. Related Liouville thms. in [Birindelli-Capuzzo Dolcetta-Cutrì, 97].

Penrose's inequality gives quantitative lower bounds on the ADM mass in terms of outward minimal surfaces

Penrose's inequality gives quantitative lower bounds on the ADM mass in terms of outward minimal surfaces

If A is the total area of the outward minimal surfaces, Penrose's inequality asserts that $m \geq \sqrt{\frac{A}{16 \pi}}$.

Penrose's inequality gives quantitative lower bounds on the ADM mass in terms of outward minimal surfaces

If A is the total area of the outward minimal surfaces, Penrose's inequality asserts that $m \geq \sqrt{\frac{A}{16 \pi}}$.
The inequality was proved in [Huisken-Ilmanen, '01], [Bray, '01] using geometric flows.

Penrose's inequality gives quantitative lower bounds on the ADM mass in terms of outward minimal surfaces

If A is the total area of the outward minimal surfaces, Penrose's inequality asserts that $m \geq \sqrt{\frac{A}{16 \pi}}$.
The inequality was proved in [Huisken-Ilmanen, '01], [Bray, '01] using geometric flows. Are there any analogues in the CR case?

Penrose's inequality gives quantitative lower bounds on the ADM mass in terms of outward minimal surfaces

If A is the total area of the outward minimal surfaces, Penrose's inequality asserts that $m \geq \sqrt{\frac{A}{16 \pi}}$.
The inequality was proved in [Huisken-Ilmanen, '01], [Bray, '01] using geometric flows. Are there any analogues in the CR case?

In the CR case, is it possible always true that negative mass implies that the Sobolev quotient is not attained?

Thanks for the attention

Thanks for the attention

Happy Birthday Alice and Paul!

